Articles | Volume 20, issue 6
https://doi.org/10.5194/acp-20-3555-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-3555-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tritium as a hydrological tracer in Mediterranean precipitation events
GeoZentrum Nordbayern, Department Geographie und Geowissenschaften,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5,
91054 Erlangen, Germany
Jürgen Sültenfuß
Institut für Umweltphysik, Universität Bremen, Otto Hahn Allee 1, 28355 Bremen, Germany
Katja Trachte
Institute for Environmental Sciences, Brandenburg University of
Technology (BTU), Cottbus-Senftenberg, 03044, Germany
Frédéric Huneau
Université de Corse Pascal Paoli, Faculté des Sciences et
Techniques, Département d'Hydrogéologie, Campus Grimaldi, BP 52,
20250 Corte, France
CNRS, UMR 6134 SPE, 20250 Corte, France
Emilie Garel
Université de Corse Pascal Paoli, Faculté des Sciences et
Techniques, Département d'Hydrogéologie, Campus Grimaldi, BP 52,
20250 Corte, France
CNRS, UMR 6134 SPE, 20250 Corte, France
Sébastien Santoni
Université de Corse Pascal Paoli, Faculté des Sciences et
Techniques, Département d'Hydrogéologie, Campus Grimaldi, BP 52,
20250 Corte, France
CNRS, UMR 6134 SPE, 20250 Corte, France
Johannes A. C. Barth
GeoZentrum Nordbayern, Department Geographie und Geowissenschaften,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5,
91054 Erlangen, Germany
Robert van Geldern
GeoZentrum Nordbayern, Department Geographie und Geowissenschaften,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5,
91054 Erlangen, Germany
Related authors
No articles found.
Aixala Gaillard, Robert van Geldern, Johannes Arthur Christopher Barth, and Christine Stumpp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1968, https://doi.org/10.5194/egusphere-2024-1968, 2024
Short summary
Short summary
We produced a new interpolated map of stable isotopes in groundwater in southern Germany and compared it to local precipitation. Interestingly, discrepancies were found between those two compartments of the hydrological cycle, highlighting different recharge patterns and evaporation processes in the northern and southern part of the study area. This research provides insights to understand the different groundwater recharge patterns on a large scale and eventually for groundwater management.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Veronika Ettrichrätz, Christian Beier, Klaus Keuler, and Katja Trachte
EGUsphere, https://doi.org/10.5194/egusphere-2023-552, https://doi.org/10.5194/egusphere-2023-552, 2023
Preprint archived
Short summary
Short summary
Will heavy precipitation increase under climate change by the end of this century? The analyses of 40 regional climate simulations for two climate scenarios show that large parts of northern, central, and eastern Europe will be affected by a robust increase in heavy and extreme precipitation, while southwestern Europe will rather experience a slight decrease. Both the increase and the affected areas can be up to twice as large in an extreme than in a more moderate greenhouse gas scenario.
Marlene Dordoni, Michael Seewald, Karsten Rinke, Kurt Friese, Robert van Geldern, Jakob Schmidmeier, and Johannes A. C. Barth
Biogeosciences, 19, 5343–5355, https://doi.org/10.5194/bg-19-5343-2022, https://doi.org/10.5194/bg-19-5343-2022, 2022
Short summary
Short summary
Organic matter (OM) turnover into dissolved inorganic carbon (DIC) was investigated by means of carbon isotope mass balances in Germany's largest water reservoir. This includes a metalimnetic oxygen minimum (MOM). Autochthonous particulate organic carbon (POC) was the main contributor to DIC, with rates that were highest for the MOM. Generally low turnover rates outline the environmental fragility of this water body in the case that OM loads increase due to storm events or land use changes.
Inga Köhler, Raul E. Martinez, David Piatka, Achim J. Herrmann, Arianna Gallo, Michelle M. Gehringer, and Johannes A. C. Barth
Biogeosciences, 18, 4535–4548, https://doi.org/10.5194/bg-18-4535-2021, https://doi.org/10.5194/bg-18-4535-2021, 2021
Short summary
Short summary
We investigated how high Fe(II) levels influence the O2 budget of a circum-neutral Fe(II)-rich spring and if a combined study of dissolved O (DO) and its isotopic composition can help assess this effect. We showed that dissolved Fe(II) can exert strong effects on the δ18ODO even though a constant supply of atmospheric O2 occurs. In the presence of photosynthesis, direct effects of Fe oxidation become masked. Critical Fe(II) concentrations indirectly control the DO by enhancing photosynthesis.
Anne Marx, Marcus Conrad, Vadym Aizinger, Alexander Prechtel, Robert van Geldern, and Johannes A. C. Barth
Biogeosciences, 15, 3093–3106, https://doi.org/10.5194/bg-15-3093-2018, https://doi.org/10.5194/bg-15-3093-2018, 2018
Short summary
Short summary
CO2 outgassing from small streams causes one of the main uncertainties in global carbon budgets. These are caused by variable flow conditions, changing stream surface areas, and groundwater seeps. Here we used groundwater data to improve a novel stable carbon isotope modelling approach. We found that CO2 outgassing contributed more than three-fourths of annual stream inorganic carbon loss in a small, silicate catchment. We underline the potential of this approach for global applications.
Sandro Makowski Giannoni, Katja Trachte, Ruetger Rollenbeck, Lukas Lehnert, Julia Fuchs, and Joerg Bendix
Atmos. Chem. Phys., 16, 10241–10261, https://doi.org/10.5194/acp-16-10241-2016, https://doi.org/10.5194/acp-16-10241-2016, 2016
Short summary
Short summary
We have analysed the atmospheric deposition of sodium and chloride and its emission sources in a tropical mountain forest characterized by a very complex terrain in the south of Ecuador. We found that, given the special location of the study area in a topographic depression in the Andes and thanks to the seasonal shifts in the atmospheric synoptic circulation, the contribution of additional sea salt sources might in part alleviate the scarcity of salt seen in other forests in the western Amazon.
R. Steinfeldt, J. Sültenfuß, M. Dengler, T. Fischer, and M. Rhein
Biogeosciences, 12, 7519–7533, https://doi.org/10.5194/bg-12-7519-2015, https://doi.org/10.5194/bg-12-7519-2015, 2015
Short summary
Short summary
The coastal upwelling systems, e.g. off Peru and Mauritania,
are key regions for the emissions of climate relevant trace gases
from the ocean into the atmosphere. Here, gases and nutrients are
transported into the ocean mixed layer from below. The upwelling velocities,
however, are too small to be measured directly.
We use the enhancement of helium-3 in upwelled
waters to quantify the vertical velocity,
which varies between 1.0 and 2.5 metres per day in the coastal regions.
S. Makowski Giannoni, R. Rollenbeck, K. Trachte, and J. Bendix
Atmos. Chem. Phys., 14, 11297–11312, https://doi.org/10.5194/acp-14-11297-2014, https://doi.org/10.5194/acp-14-11297-2014, 2014
W. Roether, P. Jean-Baptiste, E. Fourré, and J. Sültenfuß
Ocean Sci., 9, 837–854, https://doi.org/10.5194/os-9-837-2013, https://doi.org/10.5194/os-9-837-2013, 2013
Related subject area
Subject: Hydrosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
Drought-induced biomass burning as a source of black carbon to the central Himalaya since 1781 CE as reconstructed from the Dasuopu ice core
Identification of soil-cooling rains in southern France from soil temperature and soil moisture observations
Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX)
Cryosphere: a kingdom of anomalies and diversity
Using eddy covariance to measure the dependence of air–sea CO2 exchange rate on friction velocity
Dominance of climate warming effects on recent drying trends over wet monsoon regions
Characterisation of boundary layer turbulent processes by the Raman lidar BASIL in the frame of HD(CP)2 Observational Prototype Experiment
Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review
Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements
Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK
The role of the global cryosphere in the fate of organic contaminants
Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen
Uncertainties in wind speed dependent CO2 transfer velocities due to airflow distortion at anemometer sites on ships
Felipe Lobos-Roco, Oscar Hartogensis, Jordi Vilà-Guerau de Arellano, Alberto de la Fuente, Ricardo Muñoz, José Rutllant, and Francisco Suárez
Atmos. Chem. Phys., 21, 9125–9150, https://doi.org/10.5194/acp-21-9125-2021, https://doi.org/10.5194/acp-21-9125-2021, 2021
Short summary
Short summary
We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano region of the Atacama Desert through a field experiment and regional modeling. Our results show that evaporation is controlled by two regimes: (1) in the morning by local conditions with low evaporation rates and low wind speed and (2) in the afternoon with high evaporation rates and high wind speed. Afternoon winds are connected to the regional Pacific Ocean–Andes flow.
Joel D. Barker, Susan Kaspari, Paolo Gabrielli, Anna Wegner, Emilie Beaudon, M. Roxana Sierra-Hernández, and Lonnie Thompson
Atmos. Chem. Phys., 21, 5615–5633, https://doi.org/10.5194/acp-21-5615-2021, https://doi.org/10.5194/acp-21-5615-2021, 2021
Short summary
Short summary
Black carbon (BC), an aerosol that contributes to glacier melt, is important for central Himalayan hydrology because glaciers are a water source to rivers that affect 25 % of the global population in Southeast Asia. Using the Dasuopu ice core (1781–1992 CE), we find that drought-associated biomass burning is an important source of BC to the central Himalaya over a period of months to years and that hemispheric changes in atmospheric circulation influence BC deposition over longer periods.
Sibo Zhang, Catherine Meurey, and Jean-Christophe Calvet
Atmos. Chem. Phys., 19, 5005–5020, https://doi.org/10.5194/acp-19-5005-2019, https://doi.org/10.5194/acp-19-5005-2019, 2019
Short summary
Short summary
In situ rain temperature measurements are rare. Soil moisture and soil temperature observations in southern France are used to assess the cooling effects on soils of rainfall events. The rainwater temperature is estimated using observed changes of topsoil volumetric soil moisture and soil temperature in response to the rainfall event. The obtained rain temperature estimates are generally lower than the ambient air temperatures, wet-bulb temperatures, and topsoil temperatures.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Vladimir Melnikov, Viktor Gennadinik, Markku Kulmala, Hanna K. Lappalainen, Tuukka Petäjä, and Sergej Zilitinkevich
Atmos. Chem. Phys., 18, 6535–6542, https://doi.org/10.5194/acp-18-6535-2018, https://doi.org/10.5194/acp-18-6535-2018, 2018
Short summary
Short summary
The cryosphere of the Earth overlaps with the atmosphere, hydrosphere and lithosphere over vast areas with temperatures below zero C and pronounced H2O phase changes. The cryosphere plays the role of a global thermostat; however, the processes related to the cryosphere attract insufficient attention from research communities. We call attention to crucial importance of cryogenic anomalies, which make the Earth atmosphere and the entire Earth system unique.
Sebastian Landwehr, Scott D. Miller, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, and Brian Ward
Atmos. Chem. Phys., 18, 4297–4315, https://doi.org/10.5194/acp-18-4297-2018, https://doi.org/10.5194/acp-18-4297-2018, 2018
Short summary
Short summary
The ocean takes up about 25 % of emitted anthropogenic emitted carbon dioxide and thus plays a significant role in the regulation of climate. In order to accurately calculate this uptake, a quantity known as the air–sea gas transfer velocity needs to be determined. This is typically parameterised with mean wind speed, the most commonly used velocity scale for calculating air–sea transfer coefficients. In this article, we propose an alternative velocity scale known as the friction velocity.
Chang-Eui Park, Su-Jong Jeong, Chang-Hoi Ho, Hoonyoung Park, Shilong Piao, Jinwon Kim, and Song Feng
Atmos. Chem. Phys., 17, 10467–10476, https://doi.org/10.5194/acp-17-10467-2017, https://doi.org/10.5194/acp-17-10467-2017, 2017
Short summary
Short summary
In dry monsoon regions, a decrease in precipitation induces drying trends. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon regions despite the increase in precipitation. Our results explain the recent drying in the humid monsoon regions. This also supports the drying trends over the warm and water-sufficient regions in future climate.
Paolo Di Girolamo, Marco Cacciani, Donato Summa, Andrea Scoccione, Benedetto De Rosa, Andreas Behrendt, and Volker Wulfmeyer
Atmos. Chem. Phys., 17, 745–767, https://doi.org/10.5194/acp-17-745-2017, https://doi.org/10.5194/acp-17-745-2017, 2017
Short summary
Short summary
This paper reports what we believe are the first measurements throughout the atmospheric convective boundary layer of higher-order moments (up to the fourth) of the turbulent fluctuations of water vapour mixing ratio and temperature performed by a single lidar system, i.e. the Raman lidar system BASIL. These measurements, in combination with measurements from other lidar systems, are fundamental to verify and possibly improve turbulence parametrisation in weather and climate models.
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
H. C. Steen-Larsen, A. E. Sveinbjörnsdottir, A. J. Peters, V. Masson-Delmotte, M. P. Guishard, G. Hsiao, J. Jouzel, D. Noone, J. K. Warren, and J. W. C. White
Atmos. Chem. Phys., 14, 7741–7756, https://doi.org/10.5194/acp-14-7741-2014, https://doi.org/10.5194/acp-14-7741-2014, 2014
H. C. Ward, J. G. Evans, and C. S. B. Grimmond
Atmos. Chem. Phys., 13, 4645–4666, https://doi.org/10.5194/acp-13-4645-2013, https://doi.org/10.5194/acp-13-4645-2013, 2013
A. M. Grannas, C. Bogdal, K. J. Hageman, C. Halsall, T. Harner, H. Hung, R. Kallenborn, P. Klán, J. Klánová, R. W. Macdonald, T. Meyer, and F. Wania
Atmos. Chem. Phys., 13, 3271–3305, https://doi.org/10.5194/acp-13-3271-2013, https://doi.org/10.5194/acp-13-3271-2013, 2013
J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino
Atmos. Chem. Phys., 11, 9787–9801, https://doi.org/10.5194/acp-11-9787-2011, https://doi.org/10.5194/acp-11-9787-2011, 2011
F. Griessbaum, B. I. Moat, Y. Narita, M. J. Yelland, O. Klemm, and M. Uematsu
Atmos. Chem. Phys., 10, 5123–5133, https://doi.org/10.5194/acp-10-5123-2010, https://doi.org/10.5194/acp-10-5123-2010, 2010
Cited articles
Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D.,
Longstaffe, F. J., Berg, P., Schumacher, C., and Funk, A.: Proportions of
convective and stratiform precipitation revealed in water isotope ratios,
Nat. Geosci., 9, 624–629, https://doi.org/10.1038/ngeo2739, 2016.
Allison, G. B. and Holmes, J. W.: The environmental tritium concentration
of underground water and its hydrological interpretation, J. Hydrol., 19,
131–143, https://doi.org/10.1016/0022-1694(73)90075-9, 1973.
Allison, G. B. and Hughes, M. W.: The use of environmental tritium to
estimate recharge to a South-Australian aquifer, J. Hydrol., 26, 245–254, https://doi.org/10.1016/0022-1694(75)90006-2, 1975.
Ayache, M., Dutay, J.-C., Jean-Baptiste, P., Beranger, K., Arsouze, T., Beuvier, J., Palmieri, J., Le-vu, B., and Roether, W.: Modelling of the anthropogenic tritium transient and its decay product helium-3 in the Mediterranean Sea using a high-resolution regional model, Ocean Sci., 11, 323–342, https://doi.org/10.5194/os-11-323-2015, 2015.
Begemann, F. and Libby, W. F.: Continental water balance, ground water
inventory and storage times, surface ocean mixing rates and world-wide water
circulation patterns from cosmic-ray and bomb tritium, Geochim. Cosmochim.
Ac., 12, 277–296, https://doi.org/10.1016/0016-7037(57)90040-6, 1957.
Bradley, W. E. and Stout, G. E.: The vertical distribution of tritium in
water vapor in the lower troposphere, Tellus, 22, 699–706, https://doi.org/10.1111/j.2153-3490.1970.tb00538.x, 1970.
Burlando, M., Antonelli, M., and Ratto, C. F.: Mesoscale wind climate
analysis: identification of anemological regions and wind regimes, Int. J.
Climatol., 28, 629–641, https://doi.org/10.1002/joc.1561, 2008.
Castro, P., Velarde, M., Ardao, J., Perlado, J. M., and Sedano, L.:
Consequences of Different Meteorological Scenarios in the Environmental
Impact Assessment of Tritium Release, Fusion Sci. Technol., 60, 1284–1287, https://doi.org/10.13182/fst11-a12665, 2017.
Cauquoin, A., Jean-Baptiste, P., Risi, C., Fourre, E., Stenni, B., and
Landais, A.: The global distribution of natural tritium in precipitation
simulated with an Atmospheric General Circulation Model and comparison with
observations, Earth Planet. Sc. Lett., 427, 160–170, https://doi.org/10.1016/j.epsl.2015.06.043, 2015.
Cauquoin, A., Jean-Baptiste, P., Risi, C., Fourré, É., and Landais,
A.: Modeling the global bomb tritium transient signal with the AGCM
LMDZ-iso: A method to evaluate aspects of the hydrological cycle, J.
Geophys. Res.-Atmos., 121, 12612–612629, https://doi.org/10.1002/2016jd025484, 2016.
Chae, J. S., Lee, S. K., Kim, Y., Lee, J. M., Cho, H. J., Cho, Y. W., and
Yun, J. Y.: Distribution of tritium in water vapour and precipitation around
Wolsung nuclear power plant, Radiat. Prot. Dosim., 146, 330–333, https://doi.org/10.1093/rpd/ncr182, 2011.
Ciffroy, P., Siclet, F., Damois, C., and Luck, M.: A dynamic model for
assessing radiological consequences of tritium routinely released in rivers.
Application to the Loire River, J. Environ. Radioactiv., 90, 110–139, https://doi.org/10.1016/j.jenvrad.2006.06.012, 2006.
Clarke, W. B., Jenkins, W. J., and Top, Z.: Determination of tritium by mass
spectrometric measurement of 3He, Int. J. Appl. Radiat. Is., 27, 515–522, https://doi.org/10.1016/0020-708x(76)90082-x, 1976.
CNSC: Investigation of the Environmental Fate of Tritium in the Atmosphere, Tritium Studies Project. CNSC, Ottawa, Canada, available at: https://nuclearsafety.gc.ca/eng/resources/health/health-studies/tritium/environmental_fate_of_tritium_in_the_atmosphere.cfm (last access: 13 March 2020), 104 pp., ISBN 978-1-100-13928-9, 2009.
Connan, O., Hebert, D., Solier, L., Maro, D., Pellerin, G., Voiseux, C.,
Lamotte, M., and Laguionie, P.: Atmospheric tritium concentrations under
influence of AREVA NC La Hague reprocessing plant (France) and background
levels, J. Environ. Radioact., 177, 184–193, https://doi.org/10.1016/j.jenvrad.2017.06.015,
2017.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Climate Data Store (CDS), available at:
https://cds.climate.copernicus.eu/cdsapp#!/home (last access:
6 February 2019), 2017.
Craig, H. and Lal, D.: The Production Rate of Natural Tritium, Tellus, 13,
85–105, https://doi.org/10.1111/j.2153-3490.1961.tb00068.x, 1961.
Dreisigacker, E. and Roether, W.: Tritium and90Sr in North Atlantic surface
water, Earth Planet. Sc. Lett., 38, 301–312, https://doi.org/10.1016/0012-821x(78)90104-8,
1978.
Dünkeloh, A. and Jacobeit, J.: Circulation dynamics of Mediterranean
precipitation variability 1948–98, Int. J. Climatol., 23, 1843–1866, https://doi.org/10.1002/joc.973, 2003.
Eastoe, C. J., Watts, C. J., Ploughe, M., and Wright, W. E.: Future use of
tritium in mapping pre-bomb groundwater volumes, Ground Water, 50, 87–93, https://doi.org/10.1111/j.1745-6584.2011.00806.x, 2012.
Ehhalt, D. H.: Vertical profiles and transport of HTO in the troposphere, J.
Geophys. Res., 76, 7351–7367, https://doi.org/10.1029/JC076i030p07351, 1971.
Ehhalt, D. H., Rohrer, F., Schauffler, S., and Pollock, W.: Tritiated water
vapor in the stratosphere: Vertical profiles and residence time, J. Geophys.
Res.-Atmos., 107, 4757–4771, https://doi.org/10.1029/2001jd001343, 2002.
Fine, R. A., Reid, J. L., and Östlund, H. G.: Circulation of Tritium in
the Pacific Ocean, J. Phys. Oceanogr., 11, 3–14, https://doi.org/10.1175/1520-0485(1981)011<0003:cotitp>2.0.co;2, 1981.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins,
W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukaine, M.:
Evaluation of Climate Models, in: Climate Change 2013: The Physical Science
Basis, Contribution of Working Group I to the Fifth Assess-ment Report of
the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels,
A., Xia, Y., Bex, V., and Midgle, P. M., Cambridge University Press,
Cambridge, UK and New York, USA, 2013.
IAEA/WMO: Global Network of Isotopes in Precipitation, The GNIP Database, available at: https://nucleus.iaea.org/wiser (last access: 12 March 2020), 2019.
Jean-Baptiste, P., Fontugne, M., Fourre, E., Marang, L., Antonelli, C.,
Charmasson, S., and Siclet, F.: Tritium and radiocarbon levels in the Rhone
river delta and along the French Mediterranean coastline, J. Environ.
Radioact., 187, 53–64, https://doi.org/10.1016/j.jenvrad.2018.01.031, 2018.
Jenkins, W. J. and Rhines, P. B.: Tritium in the Deep North-Atlantic Ocean,
Nature, 286, 877–880, https://doi.org/10.1038/286877a0, 1980.
Jordan, C. E., Dibb, J. E., and Finkel, R. C.: 10Be∕7Be tracer of
atmospheric transport and stratosphere-troposphere exchange, J. Geophys.
Res., 108, 4234–4247, https://doi.org/10.1029/2002jd002395, 2003.
Juhlke, T. R., Meier, C., van Geldern, R., Vanselow, K. A., Wernicke, J., Baidulloeva, J., Barth, J. A. C., and Weise, S. M.: Assessing moisture sources of precipitation in the Western Pamir Mountains (Tajikistan, Central Asia) using deuterium excess, Tellus B, 71, 1–16, https://doi.org/10.1080/16000889.2019.1601987, 2019.
Juhlke, T. R., Sültenfuß, J., Trachte, K., Huneau, F., Garel, E., Santoni, S., Barth, J. A. C., and van Geldern, R.: Tritium concentrations in Mediterranean precipitation event samples from the island of Corsica (France), PANGAEA, https://doi.org/10.1594/PANGAEA.911474, 2020.
Lewis, R. R., Fröhlich, K., and Hebert, D.: Contribution to the Tritium
Continental Effect, Isotopenpraxis Isotopes in Environmental and Health
Studies, 23, 266–268, https://doi.org/10.1080/10256018708623808, 1987.
Libby, W. F.: Moratorium tritium geophysics, J. Geophys. Res., 68,
4485–4494, https://doi.org/10.1029/jz068i015p04485 1963.
Lucas, L. L. and Unterweger, M. P.: Comprehensive Review and Critical
Evaluation of the Half-Life of Tritium, J. Res. Natl. Inst. Stan., 105,
541–549, https://doi.org/10.6028/jres.105.043, 2000.
Martell, E. A.: Atmospheric Aspects of Strontium-90 Fallout: Fallout
evidence indicates short stratospheric holdup time for middle-latitude
atomic tests, Science, 129, 1197–1206, https://doi.org/10.1126/science.129.3357.1197, 1959.
Masson, M., Siclet, F., Fournier, M., Maigret, A., Gontier, G., and Bois, P.
B. d.: Tritium along the French coast of the English Channel,
Radioprotection, 40, S621–S627, https://doi.org/10.1051/radiopro:2005s1-091, 2005.
Mihok, S., Wilk, M., Lapp, A., St-Amant, N., Kwamena, N. A., and Clark, I.
D.: Tritium dynamics in soils and plants grown under three irrigation
regimes at a tritium processing facility in Canada, J. Environ. Radioact.,
153, 176–187, https://doi.org/10.1016/j.jenvrad.2015.12.025, 2016.
Momoshima, N., Okai, T., Inoue, M., and Takashima, Y.: Tritium monitoring
around a nuclear power station in normal operation, Int. J. Radiat. Appl.
Instrum. Part A, 38, 263–267, https://doi.org/10.1016/0883-2889(87)90036-0, 1987.
Mook, W. G., Gat, J. R., and Meijer, H. A. J.: Environmental isotopes in the
hydrological cycle: principles and applications, v. II: Atmospheric water,
International Hydrological Programme (IHP-V), Technical Documents in
Hydrology, edited by: IAEA, IAEA/UNESCO, 113 pp., 2001.
Oms, P.-E.: Tritium in oceans: a compilation, PANGAEA, date of access, https://doi.org/10.1594/PANGAEA.892125, 2018.
Palcsu, L., Morgenstern, U., Sultenfuss, J., Koltai, G., Laszlo, E.,
Temovski, M., Major, Z., Nagy, J. T., Papp, L., Varlam, C., Faurescu, I.,
Turi, M., Rinyu, L., Czuppon, G., Bottyan, E., and Jull, A. J. T.:
Modulation of Cosmogenic Tritium in Meteoric Precipitation by the 11-year
Cycle of Solar Magnetic Field Activity, Sci. Rep.-UK, 8, 12813, https://doi.org/10.1038/s41598-018-31208-9, 2018.
Pfahl, S. and Wernli, H.: Air parcel trajectory analysis of stable isotopes
in water vapor in the eastern Mediterranean, J. Geophys. Res.-Atmos., 113, D20104, https://doi.org/10.1029/2008jd009839, 2008.
Pfahl, S. and Wernli, H.: Lagrangian simulations of stable isotopes in
water vapor: An evaluation of nonequilibrium fractionation in the
Craig-Gordon model, J. Geophys. Res.-Atmos., 114, D20108, https://doi.org/10.1029/2009jd012054,
2009.
Roether, W.: Estimating the tritium input to groundwater from wine samples:
Groundwater and direct run-off contribution to Central European surface
waters, Symposium on isotopes in hydrology, Vienna, Austria, 1967.
Roether, W., Jean-Baptiste, P., Fourré, E., and Sültenfuß, J.: The transient distributions of nuclear weapon-generated tritium and its decay product 3 He in the Mediterranean Sea, 1952–2011, and their oceanographic potential, Ocean Sci., 9, 837–854, https://doi.org/10.5194/os-9-837-2013, 2013.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ. Modell. Softw., 95, 210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Schell, W. R., Sauzay, G., and Payne, B. R.: Tritium injection and
concentration distribution in the atmosphere, J. Geophys. Res., 75,
2251–2266, https://doi.org/10.1029/JC075i012p02251, 1970.
Schell, W. R., Sauzay, G., and Payne, B. R.: World distribution of
environmental tritium, Symposium on physical behaviour of radioactive
contaminants in the atmosphere, Vienna, Austria, 375–396, 1974.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113,
2016.
Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of
Greenland winter precipitation sources: Lagrangian moisture diagnostic and
North Atlantic Oscillation influence, J. Geophys. Res.-Atmos., 113, D03107, https://doi.org/10.1029/2007jd008503, 2008.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/bams-d-14-00110.1,
2015.
Storebø, P. B.: The Exchange of Air between Stratosphere and Troposphere,
J. Meteorol., 17, 547–554, https://doi.org/10.1175/1520-0469(1960)017<0547:teoabs>2.0.co;2, 1960.
Sültenfuß, J., Roether, W., and Rhein, M.: The Bremen mass
spectrometric facility for the measurement of helium isotopes, neon, and
tritium in water, Isotopes Environ. Health Stud., 45, 83–95, https://doi.org/10.1080/10256010902871929, 2009.
Teixeira, J., Stevens, B., Bretherton, C. S., Cederwall, R., Doyle, J. D.,
Golaz, J. C., Holtslag, A. A. M., Klein, S. A., Lundquist, J. K., Randall,
D. A., Siebesma, A. P., and Soares, P. M. M.: Parameterization of the
Atmospheric Boundary Layer: A View from Just Above the Inversion, B. Am.
Meteorol. Soc., 89, 453–458, https://doi.org/10.1175/bams-89-4-453, 2008.
Thiébault S. and Moatti J.-P. (Eds.): The Mediterranean region under climate change: a scientific update, Marseille, France, IRD, AllEnvi, 2016.
Visser, A., Thaw, M., and Esser, B.: Analysis of air mass trajectories to
explain observed variability of tritium in precipitation at the Southern
Sierra Critical Zone Observatory, California, USA, J. Environ. Radioact.,
181, 42–51, https://doi.org/10.1016/j.jenvrad.2017.10.008, 2018.
Vogel, J. C., Thilo, L., and Van Dijken, M.: Determination of groundwater
recharge with tritium, J. Hydrol., 23, 131–140, https://doi.org/10.1016/0022-1694(74)90027-4, 1974.
Von Buttlar, H. and Wendt, I.: Ground-water studies in New Mexico using
tritium as a tracer, EOS T. Am. Geophys. Un., 39, 660–668, https://doi.org/10.1029/TR039i004p00660,
1958.
Weiss, W., Bullacher, J., and Roether, W.: Evidence of pulsed discharges of
tritium from nuclear energy installations in Central European precipitation,
Behaviour of Tritium in the Environment, San Francisco, USA, 17–30, 1979.
Short summary
Tritium can serve as a useful tracer in the hydrological cycle; however, aspects of the distribution and exchange of tritium in the atmosphere are not completely understood. In particular, the movement of tritium from its natural origin in the upper atmosphere to its deposition onto the land surface by precipitation has to be quantified further. Therefore, this study collected precipitation event samples and used atmospheric models in order to improve knowledge regarding tritium dynamics.
Tritium can serve as a useful tracer in the hydrological cycle; however, aspects of the...
Altmetrics
Final-revised paper
Preprint