Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
ACP | Articles | Volume 20, issue 5
Atmos. Chem. Phys., 20, 3209–3230, 2020
https://doi.org/10.5194/acp-20-3209-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 3209–3230, 2020
https://doi.org/10.5194/acp-20-3209-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note 17 Mar 2020

Technical note | 17 Mar 2020

Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice

Claudia Marcolli

Viewed

Total article views: 819 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
577 228 14 819 16 17
  • HTML: 577
  • PDF: 228
  • XML: 14
  • Total: 819
  • BibTeX: 16
  • EndNote: 17
Views and downloads (calculated since 08 Nov 2019)
Cumulative views and downloads (calculated since 08 Nov 2019)

Viewed (geographical distribution)

Total article views: 649 (including HTML, PDF, and XML) Thereof 644 with geography defined and 5 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 03 Aug 2020
Publications Copernicus
Download
Short summary
Pore condensation and freezing (PCF) is an ice nucleation mechanism explaining ice formation at low ice supersaturation. It is assumed that liquid water condenses in pores of solid aerosol particles below water saturation followed by ice nucleation within the pores. This study discusses conditions of pore filling, homogeneous ice nucleation within the volume of porewater, and growth of ice out of the pores, taking the effect of negative pressure within pores below water saturation into account.
Pore condensation and freezing (PCF) is an ice nucleation mechanism explaining ice formation at...
Citation
Final-revised paper
Preprint