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Abstract. Pore condensation and freezing (PCF) is an ice nu-
cleation mechanism that explains ice formation at low ice su-
persaturation. It assumes that liquid water condenses in pores
of solid aerosol particles below water saturation, as described
by the Kelvin equation, followed by homogeneous ice nucle-
ation when temperatures are below about 235 K or immer-
sion freezing at higher temperatures, in case the pores contain
active sites that induce ice nucleation. Porewater is under ten-
sion (negative pressure) below water saturation as described
by the Young–Laplace equation. This negative pressure af-
fects the ice nucleation rates and the stability of the pore ice.
Here, pressure-dependent parameterizations of classical nu-
cleation theory are developed to quantify the increase in ho-
mogeneous ice nucleation rates as a function of tension and
to assess the critical diameter of pores that is required to ac-
commodate ice at negative pressures. Growth of ice out of the
pore into a macroscopic ice crystal requires ice supersatura-
tion. This supersaturation as a function of the pore opening
width is derived, assuming that the ice phase first grows as
a spherical cap on top of the pore opening before it starts to
expand laterally on the particle surface into a macroscopic
ice crystal.

1 Introduction

Cirrus are high-altitude ice clouds that influence the Earth’s
climate by reflecting incoming solar short-wave radiation and
regulating long-wave emissions to space, resulting in a net
warming effect (Stephens et al., 1990; Lohmann et al., 2008;
Kärcher, 2017; Matus and l’Ecuyer, 2017). They vary in op-

tical thickness and vertical extent depending on the atmo-
spheric conditions and their formation mechanism (Kärcher,
2017; Kienast-Sjögren et al., 2016). Cirrus may form as out-
flow from convective or frontal clouds or in situ when ris-
ing air parcels humidify while cooling (Krämer et al., 2016;
Hartmann et al., 2018). Below the homogeneous ice nucle-
ation threshold (HNT) at about 235 K, they can form through
homogeneous ice nucleation (IN) in diluting liquid aerosol
particles at relatively high ice supersaturation along the ho-
mogeneous freezing line of solution droplets (Koop et al.,
2000) or heterogeneously at lower ice supersaturation aided
by ice nucleating particles (INPs), which may induce freez-
ing through immersion nucleation when coated with water-
soluble material (Kärcher and Lohmann, 2003; Kuebbeler et
al., 2014). Marcolli (2014) proposed that, in the absence of
a coating, the prevailing mechanism of ice formation below
water saturation is pore condensation and freezing (PCF). In
PCF water that condensed in porous features of solid parti-
cles freezes and grows out of pores to form ice crystals. In-
deed, most solid aerosol particles exhibit irregular surfaces
with porous features such as cavities, slits, trenches, steps,
and interstices between aggregated particles where liquid wa-
ter can condense by capillary condensation below water satu-
ration as described by the Kelvin equation. For temperatures
below the HNT, porewater freezes homogeneously and may
evolve into a macroscopic ice crystal by depositional growth.
An indication for PCF is a distinct, almost step-like increase
in the ice fraction below water saturation for temperatures
below the HNT as compared to temperatures above it (Welti
et al., 2014; Marcolli, 2014, 2017a). Such a jump in IN activ-
ity cannot be explained by applying classical nucleation the-
ory (CNT) to deposition nucleation, assuming ice nucleation
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by deposition of water vapour with no liquid phase involved
(Welti et al., 2014; David et al., 2019a). A distinct increase in
ice fraction below the HNT has been observed for different
particle types with inherent porosity. These include clay min-
erals with slits and trenches at particle edges (Marcolli et al.,
2014, 2017a; Wagner et al., 2016; Wang et al., 2016; David et
al., 2019a), mesoporous silica particles and zeolites (Wagner
et al., 2016; David et al., 2019a, b), soot particles consisting
of aggregated primary particles (Wagner et al., 2016; Mahrt
et al., 2018, 2020; Nichman et al., 2019), porous glassy and
crystallized particles (Wagner et al., 2012, 2014; Adler et al.,
2013), and coal fly ash particles (Umo et al., 2019).

The role of pores for ice formation below water saturation
has further been confirmed in microscopy studies of ice nu-
cleation as ice crystals always formed at steps and imperfec-
tions where water may condense (Zettlemoyer et al., 1961;
Wang et al., 2016; Kiselev et al., 2016; Pach and Verda-
guer, 2019). Moreover, PCF has been directly observed for
organic and water vapour condensing in wedge-shaped pock-
ets on mica surfaces followed by crystallization and growth
out of the confinement (Christenson, 2001, 2013; Kovács
and Christenson, 2012; Kovács et al., 2012; Campbell et al.,
2017; Campbell and Christenson, 2018).

The theoretical basis for PCF was established already by
Fukuta (1966), however, without the experimental data avail-
able to constrain the relevant conditions. Here, the different
steps involved in PCF are analysed, drawing from experi-
mental data that have become available in the meantime. The
conditions for pore filling, the stability of pore ice depend-
ing on temperature and pore width, and ice nucleation rates
are derived, taking the effect of tension within pores into ac-
count. In addition to the energy barrier associated with ice
nucleation, previous studies have invoked a second energy
barrier for ice growth out of pores (Page and Sear, 2006;
Campbell and Christenson, 2018; Koop, 2017). Here, the
conditions for an energy-barrier-free ice growth out of pores
as a function of pore opening diameter and ice supersatura-
tion are derived. While the focus of most studies so far has
been on cylindrical pores, this technical note broadens the
scope to trenches, wedges, and conical pores.

2 Atmospheric scenario of PCF

PCF can occur in pores of different geometries. Cylindrical
pores and trenches fill completely at the relative humidity
(RH) of pore filling. In the case of pores with diameters of
only a few nanometres, filling and freezing even occur below
ice saturation. David et al. (2019a) have shown that growth
of ice out of such narrow pores requires high ice supersatura-
tion when they are isolated. However, when they are closely
spaced, bridging of ice caps growing out of the pores greatly
reduces the barrier for macroscopic ice growth. Conversely,
conical and wedge-shaped pores combine the narrow bot-
tom for water condensation and freezing below ice satura-

tion, with a wide pore opening enabling ice growth out of the
pore as soon as ice saturation is exceeded.

As an illustration of PCF in conical or wedge-shaped
pores, Fig. 1 depicts the atmospheric scenario of continu-
ously increasing RH due to lifting of an air parcel. The pore
surface is supposed to be wettable by liquid water but ex-
hibits no ice nucleation activity. At low RH, a water layer
forms on the pore surface and some liquid water condenses
at the bottom of the pore (step 1 in Fig. 1). The porewater
remains liquid as its volume is too small to host a critical ice
embryo. When RH increases, more water condenses (2) until
the water volume becomes large enough to freeze. Because
the water is under high tension, ice nucleation is expected
to occur readily once the volume suffices to host the criti-
cal embryo (3). Ice nucleation is immediately followed by
ice growth from the vapour phase (4), because at the same
RH, ice is able to fill wider pores than water. As RH further
increases, ice fills the pore more and more. Pores with nar-
row openings are completely filled well below ice saturation,
while at ice saturation, pores of any widths are completely
filled (5). Once ice saturation is exceeded, a spherical cap
starts to grow on top of the pore opening (6), and, when the
angle of the cap has reached the critical value, further ice
growth is unrestricted (7) and the typical ice habit develops
(8). In the following, each of these steps will be analysed in
detail and parameterizations to calculate pore filling, ice nu-
cleation, and ice growth out of the pores will be given.

3 Capillary condensation in pores

In the atmosphere, pores of aerosol particles fill and empty
in response to changes in ambient RH as the air cools
and warms. The Kelvin equation describes the equilibrium
vapour pressure over curved surfaces and can be used to cal-
culate RH of pore filling by capillary condensation. It re-
lies on the Young–Laplace equation that quantifies the pres-
sure in liquids with curved surfaces (see Appendix A2 for a
derivation of the Kelvin equation). Capillary condensed wa-
ter forms a meniscus within pores as illustrated in Fig. 2c–e.
Solving the Kelvin equation for the radius of the meniscus of
a cylindrical or conical pore, rm(T ), yields

rm(T )=
2γvw(T )vw(T ,P0)

kT ln p
pw(T ,P0)

. (1)

Here, γvw(T ) is the surface tension of the vapour–water in-
terface, vw(T ,P0) is the molecular volume of liquid wa-
ter at standard pressure (P0 = 0.1 MPa), k is the Boltzmann
constant, and T is the absolute temperature. Finally, Sw =

p
pw(T ,P0)

denotes the saturation ratio, with pw(T ,P0) being the
equilibrium vapour pressure above the flat water surface and
p the one above the curved surface. From Eq. (1) it becomes
clear that the meniscus curvature increases with decreasing
RH. Moreover, the radius rm(T ) takes negative values for
Sw < 1, indicating a concave curvature of the meniscus.
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Figure 1. Pore condensation and freezing in conical or wedge-shaped pores (brown) assuming continuously increasing RH (red line). The
pore is assumed to be covered with a quasi-liquid layer (QLL) of width t (darker blue) already at low RH. Free water (lighter blue) collects
in pores and freezes to ice (white) that further grows within the pore. At ice saturation (dashed black horizontal line), the pore is completely
filled with ice.

Figure 2. Illustration of pore shapes and pore filling: panel (a)
shows an empty conical pore with diameter Dp and panel (b) an
empty wedge-shaped pore with a width D1 and a length D2 =∞.
Panels (c) to (e) show pore condensation with increasing radius
of the meniscus for a conical or wedge-shaped pore assuming
complete wetting (θws = 0◦). The radius of meniscus in a coni-
cal or cylindrical pore is denoted rm and the radius of meniscus
in a wedge-shaped pore or trench is denoted r1 =D1/2, while
r2 =D2 =∞ (not shown).

For wedge-shaped pores or trenches, the pressure differ-
ence across the interface between the vapour and the liq-
uid phase is described by the Young–Laplace equation in
its general form (Eq. A7) with two principal axes of cur-
vatures, r1 and r2. As illustrated in Fig. 2b, r2, the radius
of curvature along the trench or wedge is assumed infinite
(r2 =∞). Therefore, the Kelvin effect just depends on the
radius of curvature r1. As a function of the saturation ratio
Sw = p/pw(T ,P0), it takes the form

r1(T )=
γvw(T )vw(T ,P0)

kT ln p
pw(T ,P0)

. (2)

The temperature dependence of the surface tension of liq-
uid water can be calculated using the IAPWS (International
Association for the Properties of Water and Steam) parame-
terization (Hrubý et al., 2014; Vinš et al., 2015):

γvw (T )= Bτ
µ (1+ bτ) . (3)

Here τ = 1− T/Tc is the dimensionless distance from the
critical temperature Tc = 647.096 K, µ= 1.256 is a univer-
sal critical exponent, coefficients B and b have values of
0.2358 Nm−1 and −0.625, respectively, and γvw(T ) is given
in units of J m−2.

The dependence of the surface tension on curvature and
pressure as described by the Tolman length, δ, is believed
to become relevant for strong curvatures (Schmelzer et al.,
1996; Kalová and Mareš, 2015). However, the Tolman length
for water and its temperature dependence are still debated.
Recently, Kim et al. (2018) determined experimentally the
Tolman length to be δ = 0.21± 0.05 nm, suggesting that the
curvature dependence of the surface tension becomes rel-
evant for pore diameters below 3 nm. However, modelling
studies yield large discrepancies in its magnitude and sign
(Malek et al., 2019), and so it is not implemented in a param-
eterization here.

The molecular volume of water depends on temperature
and pressure. However, the Kelvin equation in its classical
form makes the simplification to neglect the pressure depen-
dence (see Appendix A2). For consistency, the parameteri-
zation of the molecular volume for use in Eq. (1) includes
temperature dependence at standard pressure (P0 = 0.1 MPa)
and does not include a pressure-dependent density:

vw (T ,P0)=
Mw

Naρw (T ,P0)
, (4)

where Mw is the molecular mass of water, Na is the Avo-
gadro constant, and ρw(T ,P0) is the temperature-dependent
density at standard pressure as parameterized in Eq. (A1).

Conical pores are filled up to the diameter Dp (see Fig. 2),
which equals

Dp =−2rm(T )cosθws, (5)

where θws is the contact angle of water on the pore sur-
face, influencing the condensation of water and ultimately
ice formation via PCF (Fukuta, 1966; David et al., 2019b).

www.atmos-chem-phys.net/20/3209/2020/ Atmos. Chem. Phys., 20, 3209–3230, 2020



3212 C. Marcolli: Fundamental aspects of ice nucleation via PCF

Cylindrical pores completely fill at the critical saturation ra-
tio Sc when Eq. (5) is fulfilled. In case of perfect wetting
(θws = 0◦), the pore radius corresponds to the radius of the
water meniscus. As the ambient humidity increases above
the value of complete pore filling, the curvature of the menis-
cus decreases (i.e. the curvature radius increases as shown in
Fig. 2, panels c–e) and reaches infinity at water saturation.

According to the Young–Laplace equation, which de-
scribes the pressure difference 1P across the vapour–water
interface, a concave meniscus at the pore opening implies a
negative pressure of the water within the pore, yielding, for
conical or cylindrical pores,

1P = P −P0 =
2γvw(T )

rm(T )
, (6)

where P is the curvature-dependent pressure within the pore-
water and P0 is the standard pressure (0.1 MPa). For at-
mospheric applications, this pressure difference can be ex-
pressed as a function of the water saturation ratio, Sw =

p/pw(T ,P0), as

1P =
kT ln p

pw(T ,P0)

vw(T ,P )
. (7)

Thus, saturation ratios Sw < 1 yield negative pressure for wa-
ter within the pore.

The Kelvin equation given in Eq. (1) assumes that the
molecular volume of liquid water keeps the value at stan-
dard pressure (vw(T ,P0)), which implies incompressibility
(i.e. κ(T )= 0; see Appendix A2). Assuming constant com-
pressibility of water instead, the pressure dependence of the
molecular volume is taken into account, so that Eq. (1) be-
comes (reformulating Eq. A17 of Appendix A2)

rm(T ,P )=
γvw(T )(vw (T ,P )+ vw (T ,P0))

kT ln p
pw(T ,P0)

. (8)

A parameterization of the pressure-dependent molecular vol-
ume vw(T ,P ) is given in Eqs. (A1)–(A5).

The Laplace pressure of water within wedges and trenches
can be formulated as

1P =
kT ln p

pw(T ,P0)

2vw(T , P )
. (9)

When including the pressure dependence of the molecular
volume for the curvature of the meniscus in trenches and
wedges, Eq. (2) becomes

r1(T ,P )=
γvw (T )(vw (T , P )+ vw (T ,P0))

2kT ln p
pw(T ,P0)

. (10)

Figure 3 illustrates the saturation ratio, Sw, above concave
water surfaces (top panels) and the Laplace pressure within
the liquid as a function of the meniscus curvature (bottom

Figure 3. (a, b) Saturation ratio as a function of the meniscus radius
of cylindrical or conical pores (rm, a, c) and trenches or wedges
(r1, b, d) at 298 and 230 K. Saturation ratios are given neglecting
the effect of negative pressure on the molecular volume of water
(indicated as VP in the legend and calculated using Eqs. 1 and 2)
and accounting for the Laplace pressure exerted on the porewater
(indicated as LP and calculated using Eqs. 8 and 10). The dashed
portions of the red and blue lines indicate the extrapolation of the
molecular volume to strongly negative pressures as shown in the
lower panels. (c, d) Laplace pressure as a function of the radius of
the meniscus.

panels) for two temperatures. The pressure within the liq-
uid is calculated using Eqs. (7) and (9) for cylindrical and
wedge-shaped pores, respectively. With increasing concave
curvature (rm→ 0), the porewater is under increasing ten-
sion. Conical and wedge-shaped pores fill gradually with wa-
ter as Sw increases. In the case of cylindrical pores, capillary
condensation occurs when the pore diameter equals Dp =

−2rm(T ,P )cosθws. Similarly, in the case of trenches, pore
filling occurs when the slit width equals −r1(T ,P )cosθws.
At the RH of pore filling, the tension within the porewater is
at its critical value for bubble nucleation (Blander and Katz,
1975; Marcolli, 2017b) and decreases when RH increases un-
til the tension vanishes at water saturation. Taking the pres-
sure dependence of the molecular volume into account (using
Eqs. 8 and 10) results in a shift of the saturation ratio that is
negligible given the uncertainties in the parameterization and
compared with the temperature dependence (see Fig. 3).

4 Freezing of porewater

4.1 Homogeneous ice nucleation in bulk water

CNT formulates the Gibbs free energy to create ice from wa-
ter as the sum of a volume term, accounting for the energy re-
leased when a water molecule becomes part of the ice phase,
and a surface term, accounting for the energy needed to build
up the interface between ice and water. To compensate the
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energy invested in the buildup of the interface, an ice em-
bryo needs a critical size to become stable (e.g. Lohmann
et al., 2016). Since the surface-to-volume ratio is least for a
sphere, CNT assumes spherical morphology of the emerging
ice phase (Fukuta, 1966). While spherical morphology may
seem inappropriate considering the distinct faces of ice crys-
tals representing the lattice symmetry, the spherical shape
of ice embryos evolving in molecular dynamics simulations
supports this assumption (Zaragoza et al., 2015).

The Gibbs free energy to form a spherical ice cluster with
radius r within the liquid phase depends on T and P :

1G(T ,P )= 4πr2γiw (T ,P )+
4πr3

3vi(T ,P )
1µiw. (11)

Here, γiw(T ,P ) is the interfacial tension between ice and wa-
ter, r is the radius of the emerging ice embryo, νi(T ,P ) is
the molecular volume of water in the ice phase, and 1µiw =

µi(T ,P )−µw(T ,P ) is the difference between the chemical
potentials of ice and liquid water, respectively.

The critical radius rc(T ,P ) of an ice embryo is reached
when growth and shrinkage both lead to a decrease in
the Gibbs free energy and can be determined by setting
δ1G/δr = 0:

rc(T ,P )=
2γiw(T ,P )vi(T ,P )

−1µiw
. (12)

Accordingly, the Gibbs free energy barrier of homogeneous
ice formation within the supercooled liquid water phase is
given by

1Gc (T ,P )=
16πγiw(T ,P )

3vi(T ,P )
2

3(−1µiw)2
. (13)

4.1.1 Standard pressure

At standard pressure, the chemical potentials of liquid water
and ice as a function of temperature are given as

µw (T ,P0)= µw (T0,P0)+ kT ln(pw (T ,P0)), (14)

and

µi (T ,P0)= µi (T0,P0)+ kT ln(pi (T ,P0)). (15)

Here, pw(T ,P0) and pi(T ,P0) are the equilibrium vapour
pressures of liquid water and ice, respectively. At standard
pressure µi(T ,P0)= µw(T ,P0) when T0 = 273.15 K. For
T < 273.15 K, the chemical potential decreases when ice
forms:

1µiw = µi (T ,P0)−µw (T ,P0)

= kT ln(pi (T ,P0)− kT ln(pw (T ,P0)

=−kT ln
(
pw(T ,P0)

pi(T ,P0)

)
. (16)

Thus, the change in Gibbs free energy upon freezing can be
formulated as a function of the equilibrium vapour pressures
of water and ice, yielding at standard pressure

1G(T ,P0)= 4πr2γiw (T ,P0)

−
4πr3

3vi (T ,P0)
kT ln

(
pw (T ,P0)

pi (T ,P0)

)
. (17)

Parameterizations of the equilibrium vapour pressures over a
flat surface of water and ice at standard pressure are given in
Murphy and Koop (2005):

ln(pw (T ,P0))≈ 54.842763−
6763.22
T

− 4.210ln(T )

+ 0.000367T + tanh(0.0415(T − 218.8))

(53.878−
1331.22
T

− 9.44523ln(T )+ 0.014025T ), (18)

and

ln(pih (T ,P0))= 9.550426−
5723.265

T

+ 3.53068ln(T )− 0.00728332T . (19)

Equation (19) applies to hexagonal ice (for T > 110 K),
which is the stable ice phase at standard pressure (Murphy
and Koop, 2005). However, there is evidence that at low tem-
peratures metastable stacking disordered ice nucleates with
stacking sequences representative of cubic (ABCABC) and
hexagonal ice (ABABAB) (Kuhs et al., 2012; Koop and Mur-
ray, 2016; Hudait and Molinero, 2016; Amaya et al., 2017).
The transition from hexagonal to stacking disordered ice in-
volves an enthalpy increase of 1Gh→sd = 155± 30 J mol−1

between 180 and 190 K (Shilling et al., 2006). Using this
value to obtain the equilibrium vapour pressure of stacking
disordered ice yields (Murray et al., 2010; Nĕmec, 2013;
Laksmono et al., 2015; Koop and Murray, 2016)

psd(T ,P0)= pih (T ,P0)exp
(
1Gh→sd

RT

)
. (20)

The interfacial tension between supercooled liquid water and
the emerging ice phase (γiw(T ,P0)) is a key parameter in
CNT but poorly constrained by experiments (Ickes et al.,
2015). Experimental values are limited to 273.15 K when
hexagonal ice and liquid water are in thermodynamic equi-
librium. Since water becomes more ice-like with decreasing
temperature, γiw(T ,P0) is expected to decrease. Parameteri-
zations of CNT differ in the value of γiw(T ,P0) at the melting
temperature and its temperature dependence (see Ickes et al.,
2015, and Appendix B).

4.1.2 The role of pressure

The stability and nucleation rate of ice both depend on pres-
sure. Since water condensing within pores at Sw < 1 is under
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tension (negative pressure), the impact of pressure needs to
be taken into account. Pressure affects the chemical poten-
tials of liquid water and ice. The chemical potential of liq-
uid water as a function of pressure P can be formulated as
(Nĕmec, 2013)

µw (T ,P )= µw (T ,P0)

+ (P −P0)
vw (T ,P )+ vw(T ,P0)

2
, (21)

where µw(T ,P0) is the chemical potential at standard pres-
sure. The parameterizations of the molecular volume of liq-
uid water at standard pressure, vw(T ,P0), and including pres-
sure dependence, vw(T ,P ), are given in Appendix A1 as
Eqs. (A1)–(A5).

Since the volume of ice I , which includes hexagonal (Ih),
cubic (Ic), and stacking-disordered ice (Isd) hardly changes
under pressure, the pressure dependence of µi(T ,P ) can be
formulated as (Nĕmec, 2013):

µi (T ,P )= µi (T ,P0)+ (P −P0)vi (T ,P0) . (22)

Thus, the chemical potential difference between ice I and
water is given as

1µiw = µi (T ,P )−µw (T ,P )= µi (T ,P0)

−µw (T ,P0)+ (P −P0)vi(T ,P0)

− (P −P0)
vw (T ,P )+ vw (T ,P0)

2
. (23)

Inserting Eq. (16) yields

1µiw = (P −P0)vi (T ,P0)− (P −P0)

vw (T ,P )+ vw (T ,P0)

2
− kT ln

(
pw (T ,P0)

pi (T ,P0)

)
. (24)

Inserting Eq. (24) into Eqs. (12) and (13) yields pressure-
dependent formulations of the critical radius and the Gibbs
free energy barrier, respectively, for homogeneous nucleation
of pore ice.

Setting the chemical potential difference in Eq. (24) to
zero (1µiw = 0) provides the condition for the pressure-
dependent melting curve of ice, which can be evaluated using
the parameterizations of vi(T ,P0) and vw(T ,P ) given in Ap-
pendix A1 and the equilibrium vapour pressure of hexagonal
ice, pih(T ,P0). The excellent agreement between this evalua-
tion (solid blue line) and the measured melting point depres-
sion of hexagonal ice (blue symbols) shown in Fig. 4 con-
firms the validity of Eq. (24) and the parameterizations of the
molecular volumes of ice and water given in Appendix A1.
Since the molecular volume of ice I is larger than the one
of liquid water, increasing pressure decreases the melting
temperature and applying tension increases it. The calculated
melting temperature reaches a maximum for P ≈−170 MPa
with T ≈ 279 K.

Along with the melting point depression, there is a freez-
ing point depression that can be described as a shift of

Figure 4. Pressure dependence of melting (blue) and freezing
(black) temperatures of ice I . Melting point measurements of ice I
are from Kanno et al. (1975) (blue squares), Mishima (1996) (blue
diamonds), Henderson and Speedy (1987) (blue circles), and Roed-
der (1967) (blue triangles). For simplicity, melting data of other ice
polymorphs are not shown. The blue solid line is the melting curve
calculated by setting Eq. (24) to zero. The dashed blue line is a fit to
the measured melting temperatures (blue symbols) using the equa-
tion given in Marcolli (2017b): T (K)= 557.2− 273exp((300+
P (MPa))2/2 270 000). Freezing temperatures of ice I (black tri-
angles) are from Kanno et al. (1975). The black solid and dashed
lines represent a homogeneous ice nucleation rate of 108 cm−3 s−1

obtained by shifting the blue curves by 1P = 307 MPa to lower
values. Red line: Ick15 parameterization with pressure-dependent
chemical potential (1µiw of Eq. 24); all other parameters without
pressure dependence. Orange and brown lines: Mr10 parameteriza-
tion with pressure-dependent chemical potential (1µiw of Eq. 24)
with n= 0.3 (brown) and n= 0.97 (orange); all other parameters
without pressure dependence. Fully pressure-dependent Ick15 and
Mr10 parameterizations were optimized to overlay with the experi-
mental freezing data and are not shown here.

the melting curve by 1P = 307 MPa to lower pressures as
shown in Fig. 4 (Koop et al. 2000; Marcolli, 2017b). To de-
scribe this freezing point depression using CNT, Eq. (24) is
inserted into the parameterization of ice nucleation rates to
account for the dependence of the chemical potentials on ab-
solute pressure. Since CNT parameterizations differ in their
formulation of ice nucleation rates, two different parame-
terizations, namely the ones by Murray et al. (2010; here-
after referred to as the Mr10 parameterization) and Ickes et
al. (2015; hereafter referred to as the Ick15 parameteriza-
tion), are used here (see Appendix B for their descriptions).
Figure 4 shows that inserting the pressure-dependent formu-
lation of 1µiw in these CNT parameterizations decreases
the freezing temperatures with increasing pressure. However,
the calculated decrease does not describe the experimental
data correctly. This is expected since the chemical poten-
tials are not the only pressure-dependent quantities in the
parameterization of ice nucleation rates. To achieve agree-
ment with the measured freezing temperatures, the pressure

Atmos. Chem. Phys., 20, 3209–3230, 2020 www.atmos-chem-phys.net/20/3209/2020/



C. Marcolli: Fundamental aspects of ice nucleation via PCF 3215

dependence of the other parameters also needs to be consid-
ered. Namely, in the Ick15 parameterization, the diffusion-
activation energy depends on water diffusivity, which is a
pressure-sensitive parameter. Therefore, its parameterization
needs to be extended to include pressure dependence. More-
over, the pressure-dependent formulation of the interfacial
tension is adjusted to obtain agreement with the experimental
freezing data (see Appendix B1). For the Mr10 parameteri-
zation, the interfacial tension is extended to include pressure
dependence and adjusted to obtain agreement with the ex-
perimental data, while the pressure dependence of all other
parameters is neglected (see Appendix B2).

4.2 Stability of ice within pores

Freezing of porewater may occur when ice grows into the
pore from the outside or when ice nucleates within the pore.
For ice to form in confinement, the dimensions need to be
large enough to host the critical embryo. For mesoporous
silica, experiments have revealed the existence of a quasi-
liquid layer (QLL) between ice and the pore surface with
thickness t of 0.38 to 0.6 nm (Schreiber et al., 2001; Jähn-
ert et al., 2008; Marcolli, 2014; Morishige, 2018). In order
to incorporate an embryo of critical radius, a cylindrical pore
therefore needs a diameter Dp = 2rc(T ,P )+ 2t (see Fig. 5
for illustration). The presence of a QLL adjacent to the pore
wall provides an interface similar to bulk water such that the
interfacial tension between the QLL and the ice embryo can
be assumed the same as between bulk water and ice.

An ice embryo of critical size is metastable since
1G(T ,P )≥ 0. To become stable, it needs to grow fur-
ther until 1G(T ,P )≤ 0. In the case of spherical growth,
1G(T ,P )= 0 is reached when the embryo has a radius rs
of

rs(T ,P )=
3γiw(T ,P )vi(T ,P )

−1µiw
. (25)

While ice is free to grow spherically in bulk water, growth
in pores is constrained by the pore dimensions. In cylindrical
pores, the ice embryo grows spherically until it has reached
the QLL adjacent to the pore wall. For further growth, the
Gibbs free energy barrier is minimized when the ice embryo
continues to grow as a cylinder with spherical caps on both
ends (see Fig. 5 for illustration). The Gibbs free energy for
such growth is given as

1G(T ,P )= γiw (T ,P )
(

4πr2
+ 2πar

)
+

1µiw

vi(T ,p)

(
πar2

+
4π
3
r3
)
, (26)

with r =Dp/2+t equaling the maximum dimension a spher-
ical ice embryo can reach within the pore and a+r represent-
ing the extension of the growing ice cylinder along the pore
as depicted in Fig. 5.

In Fig. 6, 1G(T ,P ) is shown as a function of a+ r for
different pore widths using the Ick15 parameterization at
230 K and P0 = 0.1 MPa. The black dashed line indicates
1G(230 K, P0) for the growth of a cylindrical ice embryo,
starting from a thin disk with rc =Dp/2+ t , for compari-
son. The constant positive value of 1.68×10−19 J arises from
the contribution of the two ends of the cylinder to the Gibbs
free energy. If these were neglected, the negative Gibbs en-
ergy from the volume term would exactly compensate the
positive contribution from the surface of the cylinder man-
tle, resulting in 1G(T ,P )= 0 J. The black solid line rep-
resents ice nucleation in bulk water and is calculated as-
suming growth as a sphere using Eq. (26) with a = 0. It
shows a steep decrease in 1G(230K,P0) once the energy
barrier of 1.12× 10−19 J at the critical embryo size of rc =
1.095 nm is overcome and reaches 1G(230K,P0)= 0 J for
rs = 1.643 nm. Thus, a spherical pore or cage needs to be
clearly larger than the critical size to host ice permanently.

When the width of a cylindrical pore is just sufficient to
host the critical embryo, i.e. r = rc = 1.095 nm, the red line
in Fig. 6 is obtained by first increasing r until r = rc and
then increasing a while keeping r = rc constant in Eq. (26).
It shows a constant Gibbs free energy, which remains at the
critical value of 1G(230K,P0)= 1.12× 10−19 J, which is
well below the Gibbs free energy of an ice cylinder within the
pore, indicating that rounded caps are energetically favoured
compared with flat ends. If the pore is slightly wider than
the critical size, pore ice becomes stable. The green line de-
scribes the case of an ice embryo that has a spherical shape
of r = 1.1 nm when it reaches the QLL and then starts to
grow in length as a cylinder with half spheres at its ends.
The Gibbs free energy for this pore drops below zero at
a+ r = 152 nm, i.e. requiring a pore of at least 304 nm in
length to become stable. The blue line describes ice growth
within a slightly wider pore, such that the ice embryo has
grown to a sphere of r = 1.2 nm when it reaches the QLL.
Since for this pore width, the emerging ice embryo has over-
come the energy barrier clearly before it has reached the pore
wall, 1G(230K,P0) continuously decreases during further
growth and reaches negative values already for a+r = 8 nm.
Hence, given that the critical radius to host a stable ice
phase within a cylindrical pore is only slightly larger than
the critical embryo size, it is a good approximation to take
Dp = 2rc+2t as the pore diameter required to host ice stably
within the pore. Note that a large uncertainty in this expres-
sion stems from t , the thickness of the QLL, which is difficult
to measure and depends on temperature (Webber and Dore,
2004; Webber et al., 2007).

Molecular dynamics simulations have shown recently that
for r ≈ rc such that 1G(T ,P ) > 0, liquid water and ice co-
exist in time through oscillations between all-liquid and all-
crystalline states (Kastelowitz and Molinero, 2018). When r
is slightly larger such that 1G(T ,P ) < 0, all bulk water is
frozen.
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Figure 5. Ice nucleation and growth within a cylindrical pore of diameter Dp = 2r + 2t , with a describing the growth along the pore axis, t
being the thickness of the QLL, and r being the maximum radius the embryo can reach perpendicular to the pore axis.

Figure 6. Gibbs free energy of a growing ice embryo calculated
with CNT using the Ick15 parameterization for T = 230 K and
P0 = 0.1 MPa. The black solid line describes spherical growth of
the ice embryo as expected in bulk water. The black dashed line
gives 1G for the growth in length of a cylinder starting from a thin
disk with radius rc = 1.095 nm. The coloured lines show 1G for
growth in cylindrical pores with radii available for free water of
1.095 nm (critical value, red line), 1.1 nm (green line), and 1.2 nm
(blue line), respectively.

Figure 7 shows that for the conditions used in Fig. 6 (Sw =

1; P = 0.1 MPa and T = 230 K), the Mr10 parameterization
predicts slightly larger critical radii of 1.24 nm for n= 0.97
and rc = 1.26 nm for n= 0.3 compared to rc = 1.095 nm for
the Ick15 parameterization. This exemplifies the uncertainty
in critical radius depending on CNT parameterization. These
critical sizes are applicable to ice formation within pores of
particles immersed in water (i.e. prepared as a slurry). The
critical size for pore ice decreases with decreasing water sat-
uration as shown in Fig. 7. When porous particles are ex-
posed to air with Sw < 1, the water that condenses within the
pores is under negative pressure and the critical radius re-
quired to keep ice stable decreases. Thus, at Sw = 0.3, imply-
ing a pressure of−120 MPa within the porewater, the critical
radius decreases to 0.73 nm for the Ick15 parameterization
and to 0.84 nm for Mr10 with n= 0.97 and to 0.91 nm for
Mr10 with n= 0.3. Thus, in very narrow pores, ice may be
stable at low RH due to the negative pressure, but melts when
RH increases.

Figure 7. Dependence of the critical embryo radius on the water
saturation ratio at 230 K for ice nucleation within pores using Ick15
(red) and Mr10 (orange: n= 0.97; brown: n= 0.3) parameteriza-
tions. Saturation with respect to bulk ice is indicated as the black
dashed vertical line. The blue dashed line shows the negative pres-
sure that builds up in porewater when the water saturation ratio de-
creases.

4.3 Homogeneous ice nucleation within porewater

Even if pores are large enough to host ice, porewater may re-
main liquid when ice nucleation rates are too low. Figure 8a
shows the pressure dependence of homogeneous nucleation
rates for the Ick15 and Mr10 parameterizations (with n= 0.3
and 0.97) at four different temperatures from 235 to 210 K. In
panel (b), the nucleation rates are converted to times needed
to freeze a water volume corresponding to the critical em-
bryo size. All parameterizations predict a strong increase in
nucleation rates with negative pressure; however, they differ
in the degree of this increase.

According to the Ick15 parameterization, the nucleation
rate at 230 K at ice saturation (causing a tension of −42 MPa
within the porewater) is 1.34×1017 cm−3 s−1. With this rate,
it takes about 0.5 h for a critical water volume to freeze. Con-
versely, in a cylindrical pore of 3.3 nm width and 500 nm
length implying a radius r = 1.25 nm available for free water
(assuming t ≈ 0.4 nm), freezing takes place within approx-
imately 3 s. However, close to water saturation, when the
porewater experiences ambient pressure, freezing of water
in such a pore takes almost a day, highlighting the strong
impact of pressure on ice nucleation. At 30 % RHw, which
corresponds to the pore filling RH for this pore width, the
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Figure 8. Pressure dependence of homogeneous nucleation rates (a)
and the time to freeze the critical water volume for homogeneous
ice nucleation (b) at four different temperatures as indicated in the
legend. Ick15 is shown in red and Mr10 in orange for n= 0.97 and
in brown for n= 0.3.

porewater, which is at −124 MPa, freezes within 6× 10−5 s,
and even a critical water volume should freeze within∼ 0.1 s.

The Mr10 parameterization predicts similar trends, how-
ever, with a stronger increase in nucleation rates with de-
creasing temperature and increasing tension. Assuming ice
saturation at 230 K, a critical water volume freezes in no
more than 2 min for the n= 0.3 parameterization and in 5 s
for n= 0.97, while the 500 nm long pore freezes within 0.3 s
(n= 0.3) and 0.01 s (n= 0.97). At water saturation, the pore-
water takes half a day (n= 0.3) and about an hour (n= 0.97)
to freeze, while at 30 % RHw even a critical water volume
should freeze immediately (within 2×10−5 s for n= 0.3 and
10−6 s for n= 0.97).

At lower temperatures (220 and 210 K), the Ick15 param-
eterization predicts only a slight increase in nucleation rates
with decreasing pressure, while both Mr10 parameterizations
(with n= 0.3 and n= 0.97) predict higher rates than the
Ick15 parameterization at ambient pressure and a stronger
increase when water is under tension. These discrepancies
between parameterizations reflect that homogeneous ice nu-
cleation rates at standard pressure are not well constrained
for temperatures below 230 K. Despite these discrepancies,
all parameterizations agree that porewater is able to freeze

within atmospherically relevant timescales. This finding is
indeed confirmed in freezing experiments performed with
mesoporous silica particles with closely spaced cylindrical
pores of 3.8 nm diameter, which grew into macroscopic ice
crystals within about 10 s at 228 K but not at 233 K (David et
al., 2019a). Moreover, all parameterizations predict increas-
ing freezing rates with decreasing relative humidity, i.e. the
higher the tension is within the porewater. Such a behaviour
was actually observed for mesoporous silica particles with
9.1 nm pore diameter, which manifested decreasing ice frac-
tion with increasing RH at 233 K (David et al., 2019b).

Above the HNT, homogeneous ice nucleation rates decline
and nucleation sites on the pore wall are required to induce
freezing of pore ice. Thus, freezing needs to occur in immer-
sion mode.

5 Ice growth from the vapour phase

Once a critical embryo forms within a pore, freezing con-
sumes all porewater almost instantly and further ice growth
needs to occur by water vapour deposition. Since cylindrical
pores and trenches completely fill with water once the RH
of pore filling is reached, ice nucleation leads to pores com-
pletely filled with ice. Conversely, conical pores and wedges
gradually fill with water such that pores are only partly filled
with ice at the instant of porewater freezing. Hence, in this
case growth from the vapour phase starts already within the
pores.

For growth out of the pore, the pore opening needs to be
wide enough or pores need to be closely spaced (David et
al., 2019a). In the following, the conditions for growth of ice
within pores and out of pores are derived.

5.1 Ice growth within conical pores and wedges

Assuming that the Kelvin effect also applies to ice, the pore
ice should form a concave meniscus at the ice–vapour in-
terface to stabilize the ice phase with respect to evaporation
below ice saturation (Fukuta, 1966). Such a curvature can be
realized through a curved QLL on top of the ice surface. Us-
ing the Kelvin equation to describe the equilibrium condition
of ice with respect to vapour yields the following diameter of
pore filling for conical pores:

Dp (T )=
−4γvi (T )vi (T ,P0)cosθis(T )

kT ln p
pi(T ,P0)

. (27)

Here, γvi(T ) is the surface tension of ice, and θis(T ) is the
contact angle between ice and the pore surface. The ratio
p/pi(T ,P0) yields Si, the supersaturation with respect to ice.

In case of wedge-shaped pores, the diameter of pore filling
is given as

D1 (T )=
−2γvi (T )vi (T ,P0)cosθis(T )

kT ln p
pi(T ,P0)

. (28)
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The surface tension of ice is not well known. However, as-
suming that a QLL forms at the ice–vapour interface, an up-
per limit can be estimated as the sum of the surface tension
of water and the interfacial tension between water and ice:
γvi(T )= γvw(T )+ γiw(T ,P0) (David et al., 2019a).

Assuming that surface wetting precedes capillary conden-
sation within the pore such that the whole pore surface is
covered by adsorbed water when the porewater freezes, the
contact angle θis(T ) in Eqs. (27) and (28) can be replaced
by the one between ice and water. Thus, the contact angle
between ice and the substrate can be substituted by the one
between ice and water:

cosθiw(T )=
γvw(T )− γiw(T ,P0)

γvi(T )
. (29)

Figure 9 compares pore filling with ice and water at 230 K,
assuming that the growing ice phase is hexagonal and us-
ing γiw(T ) from the Ick15 parameterization and γvw(T ) as
parameterized in Eq. (2). With these assumptions, a contact
angle of θiw (230 K) ≈ 55◦ results. Since Fig. 3 showed that
using pressure-dependent molecular volumes has little im-
pact on pore filling; this effect is neglected here. Pore fill-
ing is calculated once with the assumption that the adsorbed
water layer is involved in the curvature of the meniscus and
once assuming that it is not involved, such that its presence
narrows the effective pore diameter by 2t . Note that the thick-
ness of the adsorbed water layer and the width of the QLL be-
tween the pore surface and ice do not need to coincide. How-
ever, since both values are not well constrained, we assume
them to be the same. Figure 9 shows that for Sw > 0.25, ice is
able to fill wider pores than liquid water. Moreover, the pore
filling extends to larger diameters for conical pores (panels a
and c) than for wedge-shaped pores (panels b and d), since
conical pores are constrained in two dimensions and wedge-
shaped pores only in one. The width of the QLL is significant
for narrow pores (panels a and b) but loses its relevance for
wide pores (panels c and d). At ice saturation, the pore diam-
eter for filling with ice diverges to infinity, while pore filling
with liquid water is still restricted to narrow pores. Thus, at
ice saturation, all pores fill with ice up to the pore opening,
while liquid water remains restricted to the narrow bottom of
conical and wedge-shaped pores.

5.2 Ice growth out of a pore

For an energy-barrier-free ice growth out of a pore, the en-
ergy cost to build up additional surface needs to be balanced
by the energy gain due to the increase in ice volume. To re-
alize ice volume growth with minimal increase in ice surface
area, ice is assumed to grow as a spherical cap as illustrated in
Fig. 10. Assuming such growth, the energy balance is given
as

1Ggr(T ,P )= π
((
rop+ x

)2
+h2
− r2

op

)
γvi(T )

+π((rop+ x)
2
− r2

op)γis(T )−
πh

6vi (T ,P0)(
3
(
rop+ x

)2
+h2

)
kT ln

p

pi(T ,P0)
. (30)

Here, γis(T ) is the interfacial energy between ice and the
outer surface surrounding the pore, rop is the radius of the
pore opening, h is the height of the spherical cap, and x is
the radius increase in the base of the spherical cap to the
outer surface as shown in Fig. 10. The first term on the right-
hand side of the equation describes the energy increase due
to the increase in the ice–vapour interface, the second one
is the energy increase due to the increase in the interfacial
area between ice and the outer particle surface, and the third
is the energy decrease due to the increase in ice volume.
When RH exceeds ice saturation, a spherical cap forms on
top of the pore opening. With increasing ice supersaturation
Si =

p
pih(T ,P0)

, it increases first in height h without any exten-
sion of the cap base (x = 0) until the contact angle reaches
the critical value for unlimited growth. For the assumption
that the outer surface is covered with an adsorbed water layer,
γis(T ) in Eq. (29) can be substituted by γiw(T ,P0) and the
contact angle for unlimited growth is given as the one be-
tween ice and water, θiw(T ).

The assumption that ice needs to grow to a spherical cap
with a contact angle θiw(T ) yields for cylindrical and conical
pores the following pore opening for free growth,

Dpfg(T )=
4γvi (T )vi(T )sinθiw(T )

kT ln p
pih(T ,P0)

, (31)

and for wedge-shaped pores and trenches,

D1fg(T )=
2γvi (T )vi(T )sinθiw(T )

kT ln p
pih(T ,P0)

. (32)

Figure 11 shows that large ice supersaturations are needed
for growth out of a narrow pore. At Si = 1.1, conical pore
openings need to be 36 nm in diameter to allow unrestricted
ice growth out of the pore, while for wedge-shaped pores
18 nm suffice.

A pore filled with ice can be viewed as a perfect active site
for deposition nucleation with a contact angle of 0◦, such
that there is no thermodynamic energy barrier for ice nu-
cleation, i.e. exp(1Gcθis/kT )= 1 (see the CNT formulation
for heterogeneous ice nucleation in e.g. Zobrist et al., 2007,
or Kaufmann et al., 2017). For contact angles larger than
zero, there is an energy barrier and the active site size for
growth into an ice crystal needs to be larger. In other words,
deposition nucleation occurring on active sites requires IN-
active areas that are larger than pore openings for unrestricted
ice growth. Thus, the required area for deposition nucleation
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Figure 9. Comparison of pore filling with water and ice for conical (a, c) and wedge-shaped (b, d) pores at 230 K. For water and ice, the
Kelvin effect is calculated without QLL, given as light blue and light brown lines, respectively, and assuming a QLL with width t = 0.38 nm,
given as dark blue and dark brown lines, respectively. The black, dashed horizontal line indicates ice saturation.

Figure 10. Growth of ice out of the pore as a spherical cap with an
increasing height h covering an increasing area π(rop+ x)

2.

occurring on a flat surface needs to be much larger than the
one required for immersion freezing as determined e.g. in
Kaufmann et al. (2017). This makes it unlikely that immer-
sion freezing sites are sufficiently large to host a critical em-
bryo in deposition mode. Therefore, immersion-mode active
sites present on the flat particle surface should be irrelevant
for deposition nucleation.

The Kelvin equation can also be used to calculate the
diameter for unrestricted (energy-barrier-free) growth of a
hypothetical spherical ice particle. Using the same param-
eters as for growth of pore ice yields a diameter of 44 nm
at Si = 1.1 and T = 230 K (see Fig. 11). Smaller ice parti-
cles shrink due to sublimation. This large diameter for un-

restricted ice growth arises from the high surface tension
of ice. In the atmosphere, surface tensions may be low-
ered due to adsorption of semivolatile organic vapours. The
dashed lines in Fig. 11, which were calculated with the in-
terfacial tension γiw(T ), and the surface tensions γvw(T ) and
γvi(T ), all halved, show that reduced interfacial tensions fa-
cilitate growth of ice. Trace amounts of semivolatile organic
vapours can be assumed omnipresent and should influence
PCF mainly by reducing surface tensions. The condensa-
tion of larger amounts of water-soluble organics in pores
influences PCF by lowering the water activity as discussed
in Marcolli (2017a). When solid particles have acquired a
thick coating, pores become irrelevant and freezing may oc-
cur through immersion freezing for particles with nucleation
sites or homogeneously along the homogeneous freezing line
of solution droplets.

The supersaturation required for ice growth out of pores
in Fig. 11 applies to single isolated pores. Using CNT
and molecular dynamics simulations, David et al. (2019a)
showed that a network of closely spaced pores lowers the su-
persaturation required for macroscopic ice-crystal growth out
of narrow pore openings through bridging of ice caps grow-
ing out of adjacent pores.

6 Conclusions

The conditions derived for ice nucleation within pores and
growth of ice out of pores show that porous particles are able
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Figure 11. Diameters of pore openings allowing barrier-free ice
growth out of cylindrical or conical pores (red), wedges or trenches
(green), and spherical particles (blue) as a function of the ice
saturation ratio. Panel (b) is a zoomed in view of panel (a).
Solid lines are obtained for T = 230 K with γvi = γvw+ γiw =
0.0811 J m−2

+0.0226 J m−2
= 0.1033 J m−2, γiw from Ick15, and

θiw = 55◦. Dashed lines are calculated by halving all involved in-
terfacial tensions to account for the presence of trace amounts of
organic substances that adsorb on surfaces and interfaces. Note that
the dashed red line overlays the green solid line.

to nucleate ice at low ice supersaturation and well below wa-
ter saturation. The focus of this technical note is on homo-
geneous ice nucleation within pores, which occurs below the
HNT. Above the HNT, ice nucleation needs to occur hetero-
geneously on nucleation sites within pores that are active in
immersion mode. Such nucleation sites are considered spe-
cific to each aerosol particle type. Even though porosity can
be considered a surface characteristic, PCF below the HNT
should not be viewed as a heterogeneous ice formation pro-
cess, but as homogeneous freezing because the formation of
the ice phase occurs within the volume of the supercooled
porewater and not on the pore surface.

Well suited for ice formation by PCF are particles with
conical and wedge-shaped pores or with narrow pores that
are closely spaced. Surface roughness ranging from the small
to large nanometre scale is suitable for water condensation,
freezing, and ice growth. This makes PCF the likely mecha-
nism for ice formation at low ice supersaturation. Deposition

nucleation on the other hand is unlikely if one considers the
much larger IN active areas needed for deposition nucleation
than for immersion freezing.

However, the atmospheric relevance of PCF depends on
the coating of the aerosol particles. Trace amounts may in-
deed promote ice growth out of pores, if they reduce the sur-
face tension of ice. When solid particles have acquired a thick
coating, pores likely become irrelevant. In these cases, ice
formation may occur through immersion freezing for parti-
cles that act as INP or along the homogeneous freezing line
of solution droplets.
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Appendix A

A1 Temperature- and pressure-dependent densities of
supercooled liquid water and ice

The equation of state relates density to the state variables
temperature and pressure. Water shows a density maximum
at 277.13 K at standard pressure that shifts to warmer temper-
atures for negative pressures (Pallares et al., 2016) and van-
ishes at high pressures (Mishima, 1996; Holten and Anisi-
mov, 2012). Marcolli (2017a) proposed a parameterization of
liquid water density at standard pressure (0.1 MPa) in units of
kg m−3 with a validity range from 50 to 393 K:

ρw (T ,P0)= 1864.3535− 72.5821489 · T

+ 2.5194368 · T 2
− 0.049000203 · T 3

+ 5.860253× 10−4
· T 4
− 4.5055151× 10−6

· T 5

+ 2.2616353× 10−8
· T 6
− 7.3484974× 10−11

· T 7

+ 1.4862784× 10−13
· T 8
− 1.6984748× 10−16

· T 9

+ 8.3699379× 10−20
· T 10. (A1)

To account for its pressure dependence, the density of liquid
water can be formulated in terms of the compressibility κ(T )
and its derivative ∂κ(T )/∂P :

ρw (T ,P )= ρw (T ,P0)+ κ (T ) ·P +
∂κ(T )

∂P
·P 2. (A2)

Density data, covering the pressure and temperature
ranges from 0.1 to 399 MPa and 200–300 K, respectively
(Hare and Sorensen; 1987; Mishima, 2010; Holten and
Anisimov, 2012), together with density data from Pallares
et al. (2016), covering the range from standard pressure to
−110 MPa and temperatures from 258.15 to 333.15 K, were
used to parameterize κ(T ) in units of MPa−1:

κ (T )= 0.487− 0.004368 · (T − 273.15)

+ 0.00007235 · (T − 273.15)2, (A3)

and ∂κ(T )/∂P in units of MPa−2:

∂κ (T )

∂P
=−0.0003805+ 6.639 · 106

· (T − 273.15)− 9.688 · 108
· (T − 273.15)2. (A4)

Inserting Eqs. (A3) and (A4) into Eq. (A2) yields a parame-
terization for the density of water in units of kg m−3 that is
valid from 203.15 to 333.15 K and −110 to 399 MPa, with a
standard deviation of 3 kg m−3 and maximum deviations of
±10 kg m−3.

With this density, a temperature- and pressure-dependent
molecular volume of liquid water can be formulated as

vw (T ,P )=
Mw

Naρw(T ,P )
. (A5)

The temperature-dependent molecular volume at standard
pressure, vw(T ,P0), is obtained by inserting Eq. (A1) into
Eq. (A5). The density of ice I is only slightly pressure de-
pendent. Neglecting this pressure dependence, it can be pa-
rameterized as (Zobrist et al., 2007)

vi (T ,P )≈ vi (T ,P0)=
Mw

Naρ0(
1− 0.05294

T − 273.15K
273.15K

−0.05637
(
T − 273.15K

273.15K

)2

−0.002913
(
T − 273.15K

273.15K

)3
)−1

. (A6)

Using Eq. (A6), the molecular volume of hexagonal ice
is 3.264× 10−29 m3 at 273.15 K and decreases to 3.231×
10−29 m3 at 200 K. The same density parameterization is
used for hexagonal, cubic, and stacking disordered ice be-
cause diffraction data showed that the densities of ice Ih and
ice Ic are the same within experimental uncertainty (Murray
et al., 2010; Dowell and Rinfret, 1960).

A2 Derivation of the Kelvin equation

The Young–Laplace equation describes the pressure differ-
ence1P across an interface with interfacial tension γ (T ,P )
as a function of the curvature of the surface. In its general
form, it is given as

1P = γ (T , P )

(
1
r1
+

1
r2

)
, (A7)

with r1 and r2 being the principal radii of curvature, which
are orthogonal to each other.

In the case of a curved water surface in contact with its
vapour, the Young–Laplace equation becomes

1P = P −P0 = γvw (T , P )

(
1
r1
+

1
r2

)
. (A8)

with P being the absolute pressure within the liquid and P0
the pressure over the flat surface. For a sphere with r1 = r2 =
rm one obtains Eq. (6) of the main text.

Thus, underneath convex surfaces, such as spherical cloud
droplets, pressure is increased, whereas underneath con-
cave surfaces, such as the meniscus of capillary conden-
sate/porewater, pressures are negative, which corresponds to
a tension.

In thermodynamic equilibrium, the chemical potentials of
water vapour and liquid water are equal:

µv (T ,P )= µw (T ,P ) . (A9)

www.atmos-chem-phys.net/20/3209/2020/ Atmos. Chem. Phys., 20, 3209–3230, 2020



3222 C. Marcolli: Fundamental aspects of ice nucleation via PCF

If additional pressure is exerted, the chemical potential of the
liquid phase changes to

µw (T ,P )= µw (T ,P0)+

P∫
P0

vw
(
T ,P ′

)
dP ′. (A10)

Integration yields

µw (T ,P )= µw (T ,P0)

+ (P −P0)
vw (T ,P )+ vw(T ,P0)

2
. (A11)

Here, the temperature- and pressure-dependent formula-
tion of the molecular volume, vw(T ,P ), as parameterized in
Appendix A1 can be used.

Similarly, the pressure dependence of the chemical poten-
tial of the vapour phase can be formulated as

µv (T ,P )= µv (T ,P0)+

P∫
P0

vv
(
T ,P ′

)
dP ′. (A12)

Using the ideal gas law, the molecular volume of the gas
phase as a function of the vapour pressure p is given as

vv(T ,P )=
kT

p
. (A13)

Insertion into Eq. (A12) and integration yield

µv (T ,P )= µv (T ,P0)+ kT ln
p

pw(T ,P0)
. (A14)

Inserting Eqs. (A11) and (A14) into Eq. (A9) yields

µv (T ,P0)+ kT ln
p

pw(T ,P0)
= µw (T ,P0)

+ (P −P0)
vw (T ,P )+ vw (T ,P0)

2
. (A15)

Since in thermodynamic equilibrium µv(T ,P0)=

µw(T ,P0), Eq. (15) simplifies to

kT ln
p

pw(T ,P0)
= (P −P0)

vw (T ,P )+ vw (T ,P0)

2
. (A16)

Using the Young–Laplace equation as given in Eq. (6) to cal-
culate the pressure change (1P = P −P0) due to the curva-
ture of the water surface yields

ln
p

pw(T ,P0)
=

(
2γvw(T )

rmkT

)
vw (T ,P )+ vw (T ,P0)

2
. (A17)

The Kelvin equation results when the liquid phase is as-
sumed incompressible (vw (T ,P )= vw (T ,P0)):

ln
p

pw(T ,P0)
=

2γvw(T )vw (T ,P0)

rmkT
. (A18)

Appendix B: Parameterizations of ice nucleation rates

CNT describes ice nucleation as an activated process with
a thermodynamic energy barrier and a pre-factor that often
includes an additional kinetic energy barrier. The main dif-
ferences in parameterizations of ice nucleation rates concern
the way they parameterize the pre-factor and in their assump-
tion of the solid phase that nucleates. While older parameter-
izations presume the nucleation of hexagonal ice (Ickes et
al., 2015; Zobrist et al., 2007; Pruppacher and Klett, 1997),
more recent ones assume the formation of stacking disor-
dered or cubic ice (Murray et al., 2010; Koop and Murray,
2016; Nĕmec, 2013; Laksmono et al., 2015), with conse-
quences for the equilibrium vapour pressure over ice.

The pre-factor is usually parameterized in terms of viscos-
ity or the self-diffusion coefficient of liquid water. In both
cases, the experimental data range needs to be extrapolated
to lower temperatures, usually applying the empirical Vogel–
Fulcher–Tammann equation or a power law (Jenniskens and
Blake, 1996; Smith and Kay, 1999; Angell, 1995; Koop and
Murray, 2016; Murray et al., 2010).

In order to reach agreement with experimentally observed
nucleation rates, the interfacial tension between ice and liq-
uid water is generally used as the tuning parameter (Ickes
et al., 2015). While there is reasonable agreement between
measured nucleation rates for temperatures above 234 K,
there is large disagreement at lower temperatures. Nucle-
ation rates covering the temperature range from 238 to 234 K,
which are usually measured on micrometre-sized droplets,
show discrepancies among each other of up to 2 orders of
magnitude, most probably arising from uncertainties in ab-
solute temperature measurements (Ickes et al., 2015; Riech-
ers et al., 2013). Measurements below 234 K, which require
drastically increased cooling rates and/or extremely small
sample volumes (Bartell and Chushak, 2005; Manka et al.,
2012; Laksmono et al., 2015; Amaya and Wyslouzil, 2018;
Kimmel et al., 2019), show systematic discrepancies between
each other, which are outside the error range of the differ-
ent techniques. Therefore, parameterizations need to choose
with which datasets they want to comply at low temperatures.

Some parameterizations have a restricted application
range. Zobrist et al. (2007) and Pruppacher and Klett (1997)
are limited to T > 230 K. The parameterization by Koop and
Murray (2016) claims to be well constrained by experiments,
yet it predicts critical radii rc < 0 nm for T < 220 K. Hence,
it is only applicable above 220 K. Given that for ice nucle-
ation within pores, the temperature range below 230 K is
most relevant, these parameterizations cannot be used.

To explore the range of predictions for the “no-man’s land
of ice nucleation”, two different parameterizations are com-
pared here, namely the ones by Ickes et al. (2015; Ick15)
and Murray et al. (2010; Mr10). Both parameterizations give
physically reasonable values over the whole atmospherically
relevant temperature range down to 180 K. However, these
parameterizations differ in their assumption of the ice phase
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that nucleates and the treatment of the pre-factor, as will be
outlined below. To account for the effect of tension (nega-
tive pressure) within the pores, these parameterizations are
extended to include pressure-dependent formulations of nu-
cleation rates.

B1 Parameterization by Ickes et al. (2015)

The Ick15 parameterization of homogeneous ice nucleation
rates has the form

Jhom = Cprefacexp
(
1Gc(T ,P0)

kT

)
exp

(
1Fdiff(T ,P0)

kT

)
, (B1)

with a constant pre-exponential factor Cprefac =

1041 m−3 s−1. The thermodynamic energy barrier is
formulated in terms of 1Gc(T ,P0), and the diffusion-
activation energy of a water molecule to cross the water–ice
embryo interface, 1Fdiff(T ,P0), is given as

1Fdiff (T ,P0)=
ϑ lnD(T ,P0)

ϑT
kT 2. (B2)

The Ick15 parameterization uses the empirical Vogel–
Fulcher–Tammann equation with the parameterization pro-
posed by Smith and Kay (1999) to express the temperature
dependence of the water diffusivity:

D(T ,P0)=D0 exp
(
−

E

T − T0

)
, (B3)

with D0 = 3.06× 10−7 m2 s−1, E = 892 K, and T0 = 118 K
valid in the temperature range from 150 to 273 K, yielding

1Fdiff (T ,P0)=
kT 2E

(T − T0)
2 . (B4)

The Gibbs free energy for the formation of the critical ice
embryo, 1Gc(T ,P0), is given as

1Gc (T ,P0)=
16πγiw(T ,P0)

3vi(T ,P0)
2

3
(
kT ln

(
pw(T ,P0)
pih(T ,P0)

))2 . (B5)

Here, pw(T ,P0) and pih(T ,P0) are the equilibrium vapour
pressures of supercooled liquid water and hexagonal ice, re-
spectively, from the parameterization of Murphy and Koop
(2005) as reproduced in Eqs. (18) and (19) of the main
text. The interfacial tension between ice and liquid water,
γiw(T ,P0), is assumed to show a linear temperature depen-
dence and is parameterized as

γiw (T ,P0)= 0.03− 0.18× 10−3(273.15K− T ), (B6)

where γiw has units of J m−2.

For the formulation of a pressure-dependent nucleation
rate, the pressure dependence of both the kinetic and thermo-
dynamic energy barriers need to be considered by replacing
P0 by P in Eq. (B1), yielding

Jhom = Cprefacexp
(
1Gc(T ,P )

kT

)
exp

(
1Fdiff(T ,P )

kT

)
. (B7)

The pressure dependence of 1Gc(T ,P ) is given by insert-
ing the pressure-dependent chemical potential into Eq. (B5),
yielding

1Gc (T ,P )=

16πγiw(T ,P )
3vi(T ,P0)

2

3
(
kT ln

(
pw(T ,P0)
pih(T ,P0)

)
− (P −P0)vi (T ,P0)+ (P −P0)

vw(T ,P )+vw(T ,P0)
2

)2 .

(B8)

Here, the temperature dependence of the molecular vol-
ume of ice is again neglected, i.e. νi(T ,P )= νi(T ,P0). The
diffusion-activation energy of a water molecule to cross the
water–ice embryo interface depends on the water diffusiv-
ity, which is pressure dependent. The pressure dependence of
the self-diffusion coefficient of water has been measured by
Prielmeier et al. (1988) in the temperature range from 203.5
to 363 K and for pressures up to 400 MPa. The self-diffusion
of water increases by 10 %–70 % along isotherms up to about
100–200 MPa and then decreases again when pressure fur-
ther is increased to 400 MPa. This temperature dependence
can be accounted for by introducing a pressure-dependent
T0(P ) in Eq. (B4):

T0 (P )= 117.6− 0.07416P + 0.0002213P 2, (B9)

with P given in MPa.
The thermodynamic energy barrier contains the interfacial

tension γiw(T ,P ) as the only additional pressure-dependent
parameter, as the pressure dependence of the molecular
volume of ice is neglected. Increased pressure decreases
the number of tetrahedral coordinated water molecules and
makes water less similar to ice, which should increase the in-
terfacial tension. Indeed, to bring the nucleation rate in agree-
ment with the experimental pressure-dependent freezing data
given in Fig. 4, the interfacial tension needs to increase with
increasing pressure, yielding the following expression:

γiw (T ,P )= 0.03− 0.18× 10−3 (273.15K− T )

+ 4.99× 10−5P − 1.37× 10−7P 2

+ 1.53× 10−10P 3
+ 1.40× 10−12P 4

− 2.97× 10−15P 5
− 3.05× 10−17P 6, (B10)

where P is the absolute pressure in units of MPa and
γiw(T ,P ) the interfacial tension in units of J m−2. The valid-
ity range of this parameterization is from 200 to 260 K and
from −200 to 160 MPa.
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B2 Parameterization by Murray et al. (2010)

The Murray parameterization is formulated without an expo-
nential term for the kinetic energy barrier:

Jhom =
2(γiw (T ,P0)kT )

0.5

vi(T ,P0)5/3η(T ,P0)
exp

(
1Gc(T ,P0)

kT

)
. (B11)

The pre-factor is taken from Jenniskens and Blake (1996)
and shows a dependence on viscosity η(T ). The tempera-
ture dependence of viscosity is parameterized as an adapted
Vogel–Fulcher–Tammann relation:

η(T ,P0)= η0 exp
(
DT0

T − T0

)
, (B12)

with the fragility parameter (Angell, 1995) D = 10, η0 =

105 Pas, and T0 = 108.33 K.
The Gibbs free energy for the formation of the critical ice

embryo, 1Gc(T ,P0), is given as

1Gc (T ,P0)=
16πγiw(T ,P0)

3vi(T ,P0)
2

3
(
kT ln

(
pw(T ,P0)
psd(T ,P0)

))2 . (B13)

Here pw(T ,P0) and psd(T ,P0) are the equilibrium vapour
pressures of supercooled liquid water and stacking disor-
dered ice, respectively, as given in Eqs. (18)–(20) of the main
text.

The interfacial tension between ice and water, γiw(T ,P0),
is parameterized as

γiw (T ,P0)= 0.0208
(

T

235.8K

)n
, (B14)

with units of J m−2. Murray et al. (2010) find that for n= 0.3,
the parameterization passes best through their experimental
data, while n= 0.97 is needed to fit the data of Huang and
Bartell (1995) at 200 K.

To extend the parameterization to cover both negative and
high pressures, the pressure dependence of the molecular
volume is neglected, and the thermodynamic energy barrier
is modified to

1Gc (T ,P )=

16πγiw(T ,P )
3vi(T ,P0)

2

3
(
kT ln

(
pw(T ,P0)
psd(T ,P0)

)
− (P −P0)vi (T ,P0)+ (P −P0)

vw(T ,P )+vw(T ,P0)
2

)2 .

(B15)

The pressure dependence of the viscosity of water η(T ,P )
has been investigated by Först et al. (2000) within the tem-
perature range from 260 to 293 K. For supercooled water,
viscosity slightly decreases in the pressure range from am-
bient to about 100 MPa, followed by a slight increase up to
700 MPa. Overall, the variation of viscosity in the investi-
gated pressure and temperature range is less than a factor of
2. Since the pre-factor given in Eq. (B11) just depends in-
versely on viscosity, doubling viscosity decreases the nucle-
ation rate just by a factor of 2, which is negligible considering
overall uncertainties in measurements and parameterizations.
Therefore, the pressure dependence of viscosity is neglected
and pressure is assumed to act only on the interfacial tension.

With this assumption, the following formulations of inter-
facial tensions are obtained by adjusting the calculated nucle-
ation rates to the experimental pressure-dependent freezing
curve shown in Fig. 4.

For n= 0.3,

γiw (T ,P )= 0.0208
(

T

235.8K

)0.3

+ 3.15× 10−5P

− 2.14× 10−7P 2
+ 1.63× 10−10P 3

+ 3.86× 10−12P 4
− 3.63× 10−15P 5

− 9.61× 10−17P 6. (B16)

For n= 0.97,

γiw (T ,P )= 0.0208
(

T

235.8K

)0.97

+ 4.14× 10−5P

− 1.69× 10−7P 2
− 8.01× 10−12P 3

+ 1.41× 10−12P 4
+ 3.10× 10−15P 5

− 2.96× 10−17P 6, (B17)

where P is pressure in units of MPa and γiw(T ,P ) the inter-
facial tension in units of J m−2. The validity ranges of these
equations are from 200 to 260 K and from−200 to 160 MPa.
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Appendix C: List of symbols

a extension of the ice embryo along the pore as depicted in Fig. 5
B,b coefficients to parameterize γvw(T ) in Eq. (3)
Cprefac pre-exponential factor (1041 m−3 s−1) used in the CNT parameterization by Ickes et al. (2015)
D parameter used in the Vogel–Fulcher–Tammann equation
D(T ,P0) temperature-dependent water diffusivity at standard pressure P = 0.1 MPa
D0 water diffusivity parameter used in the Vogel–Fulcher–Tammann equation
Dp diameter of a cylindrical or conical pore
D1 pore width of a wedge-shaped pore or trench
D2 pore length of a wedge-shaped pore or trench
Dp(T ) diameter of pore filling of a cylindrical or conical pore
Dpfg(T ) pore diameter of cylindrical or conical pores required for free growth of ice out of the pore
D1(T ) diameter of pore filling of a wedge-shaped pore or trench
D1fg(T ) pore diameter of trenches or wedges required for free growth of ice out of the pore
E temperature parameter used in the Vogel–Fulcher–Tammann equation
1Fdiff(T ,P0) temperature-dependent diffusion-activation energy of a water molecule to cross the water–ice em-

bryo interface
1Fdiff(T ,P ) temperature- and pressure-dependent diffusion-activation energy of a water molecule to cross the

water–ice embryo interface
1G(T ,P ) temperature- and pressure-dependent Gibbs free energy to form a spherical ice cluster
1Gc(T ,P0) temperature-dependent Gibbs free energy barrier to form ice homogeneously at standard pressure

P0 = 0.1 MPa
1Gc(T ,P ) temperature- and pressure-dependent Gibbs free energy barrier to form ice homogeneously
1Ggr(T ,P ) Gibbs free energy to grow a spherical cap on top of a pore
h height of the spherical ice cap as depicted in Fig. 10
Jhom homogeneous ice nucleation rate
k Boltzmann constant
Mw molecular mass of water
n exponent used in the CNT parameterization by Murray et al. (2010)
Na Avogadro constant
p equilibrium vapour pressure above the (curved) water surface
pw(T ,P0) temperature-dependent equilibrium vapour pressure of water at standard pressure P0 = 0.1 MPa
pw(T ,P ) temperature- and pressure-dependent equilibrium vapour pressure of water
pih(T ,P0) temperature-dependent equilibrium vapour pressure of hexagonal ice at standard pressure P0
psd(T ,P0) temperature-dependent equilibrium vapour pressure of stacking disordered ice at standard pressure

P0
P absolute pressure in MPa
P0 standard pressure (0.1 MPa)
1P pressure difference across the vapour–water interface of curved surfaces
r radius of the emerging ice embryo
rc(T ,P ) critical radius of the ice embryo
rs(T ,P ) radius of the ice embryo when 1G(T ,P )= 0
rm(T ) radius of the curved water surface of cylindrical or conical pores
rop(T ) radius of the pore opening as depicted in Fig. 10
r1(T ),r2(T ) principal radii of curvature of the water surface in wedge-shaped pores or trenches as explained in

Fig. 2
R universal gas constant
Sc critical water saturation ratio for pore filling
Si ice saturation ratio of the gas phase
Sw water saturation ratio of the gas phase
t thickness of quasi-liquid layer (QLL)
T absolute temperature in Kelvin
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T0 temperature parameter used in the Vogel–Fulcher–Tammann equation
T0(P ) pressure-dependent temperature parameter used in the Vogel–Fulcher–Tammann equation
Tc critical temperature of water (647.096 K) used to parameterize γvw(T ) (Eq. 3)
x radius increase in the base of the spherical cap beyond the pore radius as depicted in Fig. 10
γ (T ,P ) temperature- and pressure-dependent interfacial tension
γvw(T ) surface tension of the vapour–water interface
γvi(T ) surface tension of the vapour–ice interface
γis(T ) interfacial tension between ice and the outer surface surrounding the pore
γiw(T ,P ) interfacial tension between ice and water
δ Tolman length
η(T ,P ) temperature- and pressure-dependent viscosity
η0 viscosity parameter used in the Vogel–Fulcher–Tammann equation
θws contact angle of water (w) on the pore surface (s)
θis(T ) contact angle of ice (i) on the pore surface (s)
θiw(T ) contact angle between ice (i) and water (w)
κ(T ) compressibility of liquid water
µ universal critical exponent (1.256) used to parameterize γvw(T ) (Eq. 3)
µi(T ,P0) temperature-dependent chemical potential of ice at standard pressure P0
µw(T ,P0) temperature-dependent chemical potential of liquid water at standard pressure P0
µv(T ,P0) temperature-dependent chemical potential of water vapour at standard pressure P0
µi(T ,P ) temperature- and pressure-dependent chemical potential of ice
µw(T ,P ) temperature- and pressure-dependent chemical potential of liquid water
µv(T ,P ) temperature- and pressure-dependent chemical potential of water vapour
1µiw difference between chemical potentials of ice and liquid water (µi(T ,P −µw(T ,P ))

vw(T ,P0) temperature-dependent molecular volume of liquid water at standard pressure
vi(T ,P0) temperature-dependent molecular volume of water in the ice phase at standard pressure
vw(T ,P ) temperature- and pressure-dependent molecular volume of liquid water
vi(T ,P ) temperature- and pressure-dependent molecular volume of water in the ice phase
ρw(T ,P0) temperature-dependent density of liquid water at standard pressure P0
ρw(T ,P ) temperature- and pressure-dependent density of liquid water
τ dimensionless distance from the critical temperature of water used to parameterize γvw(T ) (Eq. 3)
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Appendix D: Values recommended for checking
computer codes

Table D1. Selected values of density ρw(T ,P ) in kg m−3 parameterized in Eqs. (A1)–(A5).

T (K)/P (MPa) 399 200 100 50 0.1 0.0∗ −20 −50 −100

330 1123.16 1066.83 1029.06 1007.81 985.03 984.98 975.40 960.56 934.57
298 1121.22 1069.84 1035.79 1016.70 996.27 996.23 987.66 974.39 951.17
273 1135.44 1083.87 1046.55 1025.03 1001.65 1001.60 991.70 976.27 949.03
230 1155.14 1094.92 1039.32 1005.17 966.86 966.78 950.23 924.15 877.29
210 1173.94 1106.10 1036.55 992.88 943.38 943.28 921.78 887.75 826.29

∗ Corresponds to Eq. (A1).

Table D2. Selected values of the CNT parameterizations by Ickes et al. (2015) and Murray et al. (2010).

Ickes et al. (2015) Murray et al. (2010), n= 0.3 Murray et al. (2010), n= 0.97

T P γiw 1Gc Jhom γiw 1Gc Jhom γiw 1Gc Jhom
(K) (MPa) (J m−2) (J) (J cm−3 s−1) (J m−2) (J) (J cm−3 s−1) (J m−2) (J) (J cm−3 s−1)

235 0.1 0.023165 1.5210× 10−19 1.0870× 108 0.020782 1.7763× 10−19 1.6134× 108 0.020736 1.7644× 10−19 2.3212× 108

235 50 0.025339 2.4197× 10−19 2.2253× 10−4 0.021861 2.6497× 10−19 3.3744× 10−4 0.022387 2.8458× 10−19 8.0831× 10−7

235 −50 0.020313 9.4265× 10−20 1.8630× 1015 0.018672 1.1618× 10−19 2.5693× 1016 0.018247 1.0843× 10−19 2.7677× 1017

230 0.1 0.022265 1.1184× 10−19 4.4925× 1012 0.020648 1.3767× 10−19 9.9317× 1012 0.020308 1.3097× 10−19 8.1276× 1013

230 50 0.024439 1.7398× 10−19 3.4125× 104 0.021727 1.9645× 10−19 9.3273× 104 0.021959 2.0282× 10−19 1.2618× 104

230 −50 0.019413 7.0050× 10−20 6.3169× 1017 0.018539 9.2978× 10−20 1.2185× 1019 0.017819 8.2573× 10−20 3.1651× 1020

210 0.1 0.018665 4.2656× 10−20 1.2123× 1019 0.020093 7.5259× 10−20 5.8364× 1019 0.018593 5.9634× 10−20 1.2296× 1022

210 50 0.020839 6.4854× 10−20 2.3765× 1016 0.021171 9.8304× 10−20 2.1162× 1016 0.020244 8.5952× 10−20 1.4657× 1018

210 −50 0.015813 2.6530× 10−20 3.5809× 1020 0.017983 5.5167× 10−20 5.6439× 1022 0.016105 3.9624× 10−20 1.1370× 1025
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