Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 20, issue 4
Atmos. Chem. Phys., 20, 1901–1920, 2020
https://doi.org/10.5194/acp-20-1901-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Chem. Phys., 20, 1901–1920, 2020
https://doi.org/10.5194/acp-20-1901-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Feb 2020

Research article | 20 Feb 2020

Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon

Aoxing Zhang et al.

Publications Copernicus
Download
Short summary
Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. We developed a module to simulate the emissions, atmospheric processing and direct radiative effect of BrC in the Community Earth System Model (CESM). We found that globally BrC is a significant absorber and is more centered in the tropical free troposphere compared to BC. The contribution of BrC heating to the Hadley circulation and latitudinal expansion of the tropics is comparable to BC heating.
Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. We developed...
Citation
Final-revised paper
Preprint