Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-14917-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-14917-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Elevated dust layers inhibit dissipation of heavy anthropogenic surface air pollution
Zhuang Wang
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Department of Precision Machinery and Precision Instrumentation,
University of Science and Technology of China, Hefei, 230026, China
Department of Precision Machinery and Precision Instrumentation,
University of Science and Technology of China, Hefei, 230026, China
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Key Laboratory of Precision Scientific Instrumentation of Anhui Higher
Education Institutes, University of Science and Technology of China, Hefei,
230026, China
Anhui Province Key Laboratory of Polar Environment and Global Change,
University of Science and Technology of China, Hefei, 230026, China
Zhouqing Xie
CORRESPONDING AUTHOR
Department of Environmental Science and Engineering, University of
Science and Technology of China, Hefei, 230026, China
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Anhui Province Key Laboratory of Polar Environment and Global Change,
University of Science and Technology of China, Hefei, 230026, China
Qihou Hu
CORRESPONDING AUTHOR
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Meinrat O. Andreae
Max Planck Institute for Chemistry, 55128 Mainz, Germany
Department of Geology and Geophysics, King Saud University, 11451
Riyadh, Saudi Arabia
Yunsheng Dong
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Chun Zhao
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei, 230026, China
Ting Liu
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei, 230026, China
Yizhi Zhu
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Department of Precision Machinery and Precision Instrumentation,
University of Science and Technology of China, Hefei, 230026, China
Haoran Liu
Institute of Physical Science and Information Technology, Anhui
University, Hefei, 230601, China
Chengzhi Xing
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Wei Tan
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Department of Precision Machinery and Precision Instrumentation,
University of Science and Technology of China, Hefei, 230026, China
Xiangguang Ji
School of Environmental Science and Optoelectronic Technology,
University of Science and Technology of China, Hefei, 230026, China
Jinan Lin
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Department of Precision Machinery and Precision Instrumentation,
University of Science and Technology of China, Hefei, 230026, China
Jianguo Liu
Key Lab of Environmental Optics & Technology, Anhui Institute of
Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese
Academy of Sciences, Hefei, 230031, China
Center for Excellence in Regional Atmospheric Environment, Institute
of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
Viewed
Total article views: 3,155 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 May 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 2,311 | 790 | 54 | 3,155 | 346 | 91 | 124 |
- HTML: 2,311
- PDF: 790
- XML: 54
- Total: 3,155
- Supplement: 346
- BibTeX: 91
- EndNote: 124
Total article views: 2,551 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 03 Dec 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 1,997 | 517 | 37 | 2,551 | 173 | 71 | 99 |
- HTML: 1,997
- PDF: 517
- XML: 37
- Total: 2,551
- Supplement: 173
- BibTeX: 71
- EndNote: 99
Total article views: 604 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 May 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 314 | 273 | 17 | 604 | 173 | 20 | 25 |
- HTML: 314
- PDF: 273
- XML: 17
- Total: 604
- Supplement: 173
- BibTeX: 20
- EndNote: 25
Viewed (geographical distribution)
Total article views: 3,155 (including HTML, PDF, and XML)
Thereof 3,094 with geography defined
and 61 with unknown origin.
Total article views: 2,551 (including HTML, PDF, and XML)
Thereof 2,516 with geography defined
and 35 with unknown origin.
Total article views: 604 (including HTML, PDF, and XML)
Thereof 578 with geography defined
and 26 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 18 Nov 2025
Short summary
Significant stratification of aerosols was observed in North China. Polluted dust dominated above the PBL, and anthropogenic aerosols prevailed within the PBL, which is mainly driven by meteorological conditions. The key role of the elevated dust is to alter atmospheric thermodynamics and stability, causing the suppression of turbulence exchange and a decrease in PBL height, especially during the dissipation stage, thereby inhibiting dissipation of persistent heavy surface haze pollution.
Significant stratification of aerosols was observed in North China. Polluted dust dominated...
Altmetrics
Final-revised paper
Preprint