Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-14757-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-14757-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS 7001, Australia
Australian Antarctic Program Partnership, IMAS, University of Tasmania, Hobart, TAS 7001, Australia
ARC Centre of Excellence for Climate Extremes, IMAS, University of Tasmania, Hobart, TAS 7001, Australia
Andrew R. Klekociuk
Antarctica and the Global System Program, Australian Antarctic Division, 203 Channel Highway, Kingston, TAS 7050, Australia
Australian Antarctic Program Partnership, IMAS, University of Tasmania, Hobart, TAS 7001, Australia
Yuhang Pan
School of Earth Sciences, McCoy Building, The University of Melbourne, Parkville, VIC 3010, Australia
Related authors
Shreya Trivedi, William R. Hobbs, and Marilyn Raphael
EGUsphere, https://doi.org/10.5194/egusphere-2024-2744, https://doi.org/10.5194/egusphere-2024-2744, 2025
Short summary
Short summary
The study analyzes sea-ice thickness variations in the Southern Ocean using 39 CMIP6 models and satellite and reanalysis datasets. It reveals seasonal covariances between sea ice area and thickness. The models replicate the mean seasonal cycle and spatial patterns, but show significant inter-model variability, with sea-ice area better simulated than thickness. The study emphasizes the need for improved Antarctic sea-ice processes in models for accurate thickness projections.
Shreya Trivedi, William R. Hobbs, and Marilyn Raphael
EGUsphere, https://doi.org/10.5194/egusphere-2024-2744, https://doi.org/10.5194/egusphere-2024-2744, 2025
Short summary
Short summary
The study analyzes sea-ice thickness variations in the Southern Ocean using 39 CMIP6 models and satellite and reanalysis datasets. It reveals seasonal covariances between sea ice area and thickness. The models replicate the mean seasonal cycle and spatial patterns, but show significant inter-model variability, with sea-ice area better simulated than thickness. The study emphasizes the need for improved Antarctic sea-ice processes in models for accurate thickness projections.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
Short summary
Ceilometers are instruments that are widely deployed as part of operational networks. They are usually not able to detect cloud phase. Here, we propose an evaluation of various methods to detect supercooled liquid water with ceilometer observations, using an extensive dataset from Davis, Antarctica. Our results highlight the possibility for ceilometers to detect supercooled liquid water in clouds.
Alexander D. Fraser, Robert A. Massom, Mark S. Handcock, Phillip Reid, Kay I. Ohshima, Marilyn N. Raphael, Jessica Cartwright, Andrew R. Klekociuk, Zhaohui Wang, and Richard Porter-Smith
The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, https://doi.org/10.5194/tc-15-5061-2021, 2021
Short summary
Short summary
Landfast ice is sea ice that remains stationary by attaching to Antarctica's coastline and grounded icebergs. Although a variable feature, landfast ice exerts influence on key coastal processes involving pack ice, the ice sheet, ocean, and atmosphere and is of ecological importance. We present a first analysis of change in landfast ice over an 18-year period and quantify trends (−0.19 ± 0.18 % yr−1). This analysis forms a reference of landfast-ice extent and variability for use in other studies.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Cited articles
Bracegirdle, T. J. and Marshall, G. J.: The Reliability of Antarctic
Tropospheric Pressure and Temperature in the Latest Global Reanalyses, J.
Clim., 25, 7138–7146, https://doi.org/10.1175/JCLI-D-11-00685.1, 2012.
Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L.
M., Weidner, G. A., and Wilson, A. B.: Central West Antarctica among the
most rapidly warming regions on Earth, Nat. Geosci., 6, 139–145,
https://doi.org/10.1038/Ngeo1671, 2013.
Comiso, J. C., Gersten, R. A., Stock, L. V., Turner, J., Perez, G. J., and
Cho, K.: Positive Trend in the Antarctic Sea Ice Cover and Associated
Changes in Surface Temperature, J. Clim., 30, 2251–2267,
https://doi.org/10.1175/jcli-d-16-0408.1, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dotto, T. S., Naveira Garabato, A. C., Bacon, S., Holland, P. R., Kimura,
S., Firing, Y. L., Tsamados, M., Wåhlin, A. K., and Jenkins, A.:
Wind-Driven Processes Controlling Oceanic Heat Delivery to the Amundsen Sea,
Antarctica, J. Phys. Oceanogr., 49, 2829–2849, https://doi.org/10.1175/JPO-D-19-0064.1, 2019.
Drinkwater, M. R. and Xiang, L.: Seasonal to interannual variability in
Antarctic sea-ice surface melt, IEEE T. Geosci. Remote, 38, 1827–1842,
https://doi.org/10.1109/36.851767, 2000.
Dupont, T. K. and Alley, R. B.: Assessment of the importance of ice-shelf
buttressing to ice-sheet flow, Geophys. Res. Lett., 32, L04503,
https://doi.org/10.1029/2004gl022024, 2005.
Enomoto, H. and Ohmura, A.: The influences of atmospheric half-yearly cycle
on the sea ice extent in the Antarctic, J. Geophys. Res.-Ocean., 95, 9497–9511, https://doi.org/10.1029/JC095iC06p09497, 1990.
European Centre for Medium-Range Weather Forecasts: ERA-Interim Project, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6CR5RD9 (last access: 26 September 2018), 2009.
Frolicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P., Krasting,
J. P., and Winton, M.: Dominance of the Southern Ocean in Anthropogenic
Carbon and Heat Uptake in CMIP5 Models, J. Clim., 28, 862–886,
https://doi.org/10.1175/Jcli-D-14-00117.1, 2015.
Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner,
T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R.,
Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod,
A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D.
G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki,
W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons,
A., Wargan, K., Whitaker, J. S., and Zou, C. Z.: Introduction to the SPARC
Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis
systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Clim., 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Global Modeling and Assimilation Office: Monthly mean,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center, https://doi.org/10.5067/5ESKGQTZG7FO (last access: 3 March 2020), 2015.
Gordon, A. L.: Seasonality of Southern-Ocean Sea Ice, J. Geophys. Res.-Ocean.,
86, 4193–4197, https://doi.org/10.1029/JC086iC05p04193, 1981.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford,
P., Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza,
R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J.,
Forbes, R., Geer, A. J., Haiden, T., Hólm, E., Haimberger, L., Hogan,
R., Horányi, A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater,
J., Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F.,
Yang, X., Zsótér, E., and Zuo, H.: Operational global reanalysis:
progress, future directions and synergies with NWP, ERA Report Series 27, 63 pp., https://doi.org/10.21957/tkic6g3wm, 2018.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on pressure levels from 1979 to present, Copernicus Climate Change Service Climate Data Store, doi10.24381/cds.6860a573 (last access: 2 March 2020), 2019.
Hobbs, W., Massom, R., Stammerjohn, S., Reid, P., Williams, G. D., and
Meier, W. N.: A Review of Recent Changes in Southern Ocean Sea Ice, their
Drivers and Forcings, Glob. Planet. Change, 143, 228–250,
https://doi.org/10.1016/j.gloplacha.2016.06.008, 2016.
Holland, P. R. and Kwok, R.: Wind-driven trends in Antarctic sea-ice drift,
Nat. Geosci., 5, 872–875, https://doi.org/10.1038/NGEO1627, 2012.
Hosking, J. S., Orr, A., Marshall, G. J., Turner, J., and Phillips, T.: The
Influence of the Amundsen-Bellingshausen Seas Low on the Climate of West
Antarctica and Its Representation in Coupled Climate Model Simulations, J.
Clim., 26, 6633–6648, https://doi.org/10.1175/JCLI-D-12-00813.1, 2013.
Japan Meteorological Agency/Japan: JRA-55: Japanese 55-year Reanalysis, Monthly Means and Variances. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D60G3H5B (last access: 26 May 2020), 2013.
Jones, J. M., Gille, S. T., Goosse, H., Abram, N. J., Canziani, P. O.,
Charman, D. J., Clem, K. R., Crosta, X., de Lavergne, C., Eisenman, I.,
England, M. H., Fogt, R. L., Frankcombe, L. M., Marshall, G. J.,
Masson-Delmotte, V., Morrison, A. K., Orsi, A. J., Raphael, M. N., Renwick,
J. A., Schneider, D. P., Simpkins, G. R., Steig, E. J., Stenni, B.,
Swingedouw, D., and Vance, T. R.: Assessing recent trends in high-latitude
Southern Hemisphere surface climate, Nat. Clim. Change, 6, 917–926,
https://doi.org/10.1038/nclimate3103, 2016.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1643, https://doi.org/10.1175/Bams-83-11-1631(2002)083<1631:Nar>2.3.Co;2, 2002.
King, J. C. and Harangozo, S. A.: Climate change in the western Antarctic
Peninsula since 1945: observations and possible causes, Ann. Glaciol., 27,
571–575, https://doi.org/10.3189/1998AoG27-1-571-575, 1998.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kusahara, K., Williams, G. D., Massom, R., Reid, P., and Hasumi, H.: Roles
of wind stress and thermodynamic forcing in recent trends in Antarctic sea
ice and Southern Ocean SST: An ocean-sea ice model study, Glob.
Planet. Change, 158, 103–118, https://doi.org/10.1016/j.gloplacha.2017.09.012, 2017.
Lenaerts, J. T. M., Lhermitte, S., Drews, R., Ligtenberg, S. R. M., Berger,
S., Helm, V., Smeets, C. J. P. P., van den Broeke, M. R., van de Berg, W.
J., van Meijgaard, E., Eijkelboom, M., Eisen, O., and Pattyn, F.: Meltwater
produced by wind-albedo interaction stored in an East Antarctic ice shelf,
Nat. Clim. Change, 7, 58–63, https://doi.org/10.1038/Nclimate3180, 2017.
Marshall, G. J.: Trends in the southern annular mode from observations and
reanalyses, J. Clim., 16, 4134–4143, 2003.
Marshall, G. J., Orr, A., and Turner, J.: A Predominant Reversal in the
Relationship between the SAM and East Antarctic Temperatures during the
Twenty-First Century, J. Clim., 26, 5196–5204, https://doi.org/10.1175/JCLI-D-12-00671.1,
2013.
Massom, R. A., Stammerjohn, S. E., Lefebvre, W., Harangozo, S. A., Adams,
N., Scambos, T. A., Pook, M. J., and Fowler, C.: West Antarctic Peninsula
sea ice in 2005: Extreme ice compaction and ice edge retreat due to strong
anomaly with respect to climate, J. Geophys. Res.-Ocean., 113, C02S20,
https://doi.org/10.1029/2007jc004239, 2008.
Massonnet, F., Mathiot, P., Fichefet, T., Goosse, H., Beatty, C. K.,
Vancoppenolle, M., and Lavergne, T.: A model reconstruction of the Antarctic
sea ice thickness and volume changes over 1980–2008 using data assimilation,
Ocean Model., 64, 67–75, https://doi.org/10.1016/j.ocemod.2013.01.003, 2013.
Meier, W. N., Peng, G., Scott, D. J., and Savoie, M.: Verification of a new
NOAA/NSIDC passive microwave sea-ice concentration climate record, Polar
Res., 33, 21004, https://doi.org/10.3402/polar.v33.21004, 2014.
Meier, W. N., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve J.: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3.01, Boulder, Colorado USA, NSIDC, National Snow and Ice Data Center, https://doi.org/10.7265/N59P2ZTG (last access: 30 November 2020), 2017.
Meneghini, B., Simmonds, I., and Smith, I. N.: Association between
Australian rainfall and the Southern Annular Mode, Int. J. Climatol., 27,
109–121, https://doi.org/10.1002/joc.1370, 2007.
Nicolas, J. P. and Bromwich, D. H.: New Reconstruction of Antarctic
Near-Surface Temperatures: Multidecadal Trends and Reliability of Global
Reanalyses, J. Clim., 27, 8070–8093, https://doi.org/10.1175/JCLI-D-13-00733.1, 2014.
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331, https://doi.org/10.1126/science.aaa0940,
2015.
Paolo, F. S., Padman, L., Fricker, H. A., Adusumilli, S., Howard, S., and
Siegfried, M. R.: Response of Pacific-sector Antarctic ice shelves to the El
Ni no/Southern Oscillation, Nat. Geosci., 11, 121–126,
https://doi.org/10.1038/s41561-017-0033-0, 2018.
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci., 116, 14414–14423, https://doi.org/10.1073/pnas.1906556116,
2019.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart,
F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thépaut, J.-N.,
Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L., and Fisher,
M.: ERA-20C: An Atmospheric Reanalysis of the Twentieth Century, J. Clim.,
29, 4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016.
Pritchard, H. D., Ligtenberg, S. R., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968, 2012.
Raphael, M. N. and Hobbs, W.: The influence of the large-scale atmospheric
circulation on Antarctic sea ice during ice advance and retreat seasons,
Geophys. Res. Lett., 41, 5037–5045, https://doi.org/10.1002/2014gl060365, 2014.
Raphael, M. N., Marshall, G. J., Turner, J., Fogt, R. L., Schneider, D.,
Dixon, D. A., Hosking, J. S., Jones, J. M., and Hobbs, W. R.: The Amundsen
Sea Low: Variability, Change, and Impact on Antarctic Climate, B. Am. Meteorol.
Soc., 97, 111–121, https://doi.org/10.1175/bams-d-14-00018.1, 2016.
Saha, S., Moorthi, S., Pan, H. L., Wu, X. R., Wang, J. D., Nadiga, S.,
Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H. X., Stokes, D.,
Grumbine, R., Gayno, G., Wang, J., Hou, Y. T., Chuang, H. Y., Juang, H. M.
H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser,
D., Derber, J., Ek, M., Meng, J., Wei, H. L., Yang, R. Q., Lord, S., Van den
Dool, H., Kumar, A., Wang, W. Q., Long, C., Chelliah, M., Xue, Y., Huang, B.
Y., Schemm, J. K., Ebisuzaki, W., Lin, R., Xie, P. P., Chen, M. Y., Zhou, S.
T., Higgins, W., Zou, C. Z., Liu, Q. H., Chen, Y., Han, Y., Cucurull, L.,
Reynolds, R. W., Rutledge, G., and Goldberg, M.: The Ncep Climate Forecast
System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010bams3001.1,
2010a.
Saha, S., Moorthi, S., Pan, H. L., Wu, X. R., Wang, J. D., Nadiga, S.,
Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H. X., Stokes, D.,
Grumbine, R., Gayno, G., Wang, J., Hou, Y. T., Chuang, H. Y., Juang, H. M.
H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser,
D., Derber, J., Ek, M., Meng, J., Wei, H. L., Yang, R. Q., Lord, S., Van den
Dool, H., Kumar, A., Wang, W. Q., Long, C., Chelliah, M., Xue, Y., Huang, B.
Y., Schemm, J. K., Ebisuzaki, W., Lin, R., Xie, P. P., Chen, M. Y., Zhou, S.
T., Higgins, W., Zou, C. Z., Liu, Q. H., Chen, Y., Han, Y., Cucurull, L.,
Reynolds, R. W., Rutledge, G., and Goldberg, M.: NCEP Climate Forecast System Reanalysis (CFSR) Monthly Products, January 1979 to December 2010, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6DN438J (last access: 26 May 2020), 2010b.
Schroeter, S., Hobbs, W., and Bindoff, N. L.: Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models, The Cryosphere, 11, 789–803, https://doi.org/10.5194/tc-11-789-2017, 2017.
Schroeter, S., Hobbs, W., Bindoff, N. L., Massom, R., and Matear, R.:
Drivers of Antarctic Sea Ice Volume Change in CMIP5 Models, J. Geophys.
Res.-Ocean., 123, 7914–7938, https://doi.org/10.1029/2018jc014177, 2018.
Simmons, A. J., Berrisford, P., Dee, D. P., Hersbach, H., Hirahara, S., and
Thépaut, J. N.: A reassessment of temperature variations and trends from
global reanalyses and monthly surface climatological datasets, Q. J. Roy.
Meteor. Soc., 143, 101–119, https://doi.org/10.1002/qj.2949, 2017.
Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese,
B. S., McColl, C., Allan, R., Yin, X., Vose, R., Titchner, H., Kennedy, J.,
Spencer, L. J., Ashcroft, L., Brönnimann, S., Brunet, M., Camuffo, D.,
Cornes, R., Cram, T. A., Crouthamel, R., Domínguez-Castro, F., Freeman,
J. E., Gergis, J., Hawkins, E., Jones, P. D., Jourdain, S., Kaplan, A.,
Kubota, H., Blancq, F. L., Lee, T.-C., Lorrey, A., Luterbacher, J., Maugeri,
M., Mock, C. J., Moore, G. W. K., Przybylak, R., Pudmenzky, C., Reason, C.,
Slonosky, V. C., Smith, C. A., Tinz, B., Trewin, B., Valente, M. A., Wang,
X. L., Wilkinson, C., Wood, K., and Wyszyński, P.: Towards a more
reliable historical reanalysis: Improvements for version 3 of the Twentieth
Century Reanalysis system, Q. J. Roy. Meteor. Soc., 145, 2876–2908,
https://doi.org/10.1002/qj.3598, 2019.
Stammerjohn, S., Massom, R., Rind, D., and Martinson, D.: Regions of rapid
sea ice change: An inter-hemispheric seasonal comparison, Geophys.
Res. Lett., 39, L06501, https://doi.org/10.1029/2012gl050874, 2012.
Steig, E. J. and Orsi, A. J.: The heat is on in Antarctica, Nat. Geosci., 6,
87–88, https://doi.org/10.1038/ngeo1717, 2013.
Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J.
C., and Shindell, D. T.: Warming of the Antarctic ice-sheet surface since
the 1957 International Geophysical Year (Vol 457, p. 459, 2009), Nature,
460, 766–766, https://doi.org/10.1038/Nature08286, 2009.
Swart, N. C. and Fyfe, J. C.: Observed and simulated changes in the
Southern Hemisphere surface westerly wind-stress, Geophys. Res.
Lett., 39, L16711,
https://doi.org/10.1029/2012gl052810, 2012.
The NCAR Command Language (Version 6.6.2): UCAR/NCAR/CISL/TDD, https://doi.org/10.5065/D6WD3XH5, 2019.
Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J., and Orr, A.: The
Amundsen Sea low, Int. J. Climatol., 33, 1818–1829, https://doi.org/10.1002/joc.3558, 2013.
Turner, J., Barrand, N. E., Bracegirdle, T. J., Convey, P., Hodgson, D. A.,
Jarvis, M., Jenkins, A., Marshall, G., Meredith, M. P., Roscoe, H.,
Shanklin, J., French, J., Goosse, H., Guglielmin, M., Gutt, J., Jacobs, S.,
Kennicutt, M. C., Masson-Delmotte, V., Mayewski, P., Navarro, F., Robinson,
S., Scambos, T., Sparrow, M., Summerhayes, C., Speer, K., and Klepikov, A.:
Antarctic climate change and the environment: an update, Pol. Record, 50,
237–259, https://doi.org/10.1017/S0032247413000296, 2014.
Wang, Y., Zhou, D., Bunde, A., and Havlin, S.: Testing reanalysis data sets
in Antarctica: Trends, persistence properties, and trend significance,
J. Geophys. Res.-Atmos., 121, 12839–12855,
https://doi.org/10.1002/2016JD024864, 2016.
Zhang, J. L.: Increasing Antarctic sea ice under warming atmospheric and
oceanic conditions, J. Clim., 20, 2515–2529, https://doi.org/10.1175/Jcli4136.1, 2007.
Short summary
Reanalysis products are an invaluable tool for representing variability and long-term trends in regions with limited in situ data. However, validation of these products is difficult because of that lack of station data. Here we present a novel assessment of eight reanalyses over the polar Southern Ocean, leveraging the close relationship between trends in sea ice cover and surface air temperature, that provides clear guidance on the most reliable product for Antarctic research.
Reanalysis products are an invaluable tool for representing variability and long-term trends in...
Altmetrics
Final-revised paper
Preprint