Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-14377-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-14377-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Properties of ice cloud over Beijing from surface Ka-band radar observations during 2014–2017
Key Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China
Yufang Tian
Key Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China
Key Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China
Congzheng Han
Key Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China
Key Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China
Yongheng Bi
Key Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China
Shu Duan
Key Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China
Daren Lyu
Key Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China
Related authors
Congcong Qiao, Song Liu, Juan Huo, Xihan Mu, Ping Wang, Shengjie Jia, Xuehua Fan, and Minzheng Duan
Atmos. Meas. Tech., 16, 1539–1549, https://doi.org/10.5194/amt-16-1539-2023, https://doi.org/10.5194/amt-16-1539-2023, 2023
Short summary
Short summary
We established a spectral-fitting method to derive precipitable water vapor (PWV) and aerosol optical depth based on a strict radiative transfer theory by the spectral measurements of direct sun from EKO MS711 and MS712 spectroradiometers. The retrievals were compared with that of the colocated CE-318 photometer; the results showed a high degree of consistency. In the PWV inversion, a strong water vapor absorption band around 1370 nm is introduced to retrieve PWV in a relatively dry atmosphere.
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022, https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary
Short summary
Small-scale turbulence plays a vital role in the vertical exchange of heat, momentum and mass in the atmosphere. There are currently three models that can use spectrum width data of MST radar to calculate turbulence parameters. However, few studies have explored the applicability of the three calculation models. We compared and analysed the turbulence parameters calculated by three models. These results can provide a reference for the selection of models for calculating turbulence parameters.
Siming Zheng, Juan Huo, Wenbing Cai, Yinhui Zhang, Peng Li, Gaoyuan Zhang, Baofeng Ji, Jiafeng Zhou, and Congzheng Han
Atmos. Meas. Tech., 15, 1675–1687, https://doi.org/10.5194/amt-15-1675-2022, https://doi.org/10.5194/amt-15-1675-2022, 2022
Short summary
Short summary
We demonstrated the processing of millimeter wave link data with a time resolution of 1 min for 60 dry periods from August 2020 to July 2021. We have proposed a new method for extracting water vapor attenuation values and applied this method to data processing within this year. We found that the water vapor density value obtained from the millimeter wave link is highly correlated with the actual measurement value of the weather station.
Linjun Pan, Yinan Wang, and Yongheng Bi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2876, https://doi.org/10.5194/egusphere-2025-2876, 2025
Short summary
Short summary
Ground-based infrared radiometers provide low-cost cloud monitoring. Existing methods require supporting data from other instruments—making them unusable in remote regions like the Tibetan Plateau. Our innovation enables fully independent cloud identification using only the radiometer's data. This self-contained solution eliminates dependencies on external equipment or historical datasets, providing a practical cloud monitoring method for isolated sites where conventional approaches fail.
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024, https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary
Short summary
Accurate cloud quantification is critical for climate research. We developed a novel computer vision framework using deep neural networks and clustering algorithms for cloud classification and segmentation from ground-based all-sky images. After a full year of observational training, our model achieves over 95 % accuracy on four cloud types. The framework enhances quantitative analysis to support climate research by providing reliable cloud data.
Xue Wu, Lars Hoffmann, Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Silvio Kalisch, Xin Wang, Bing Chen, Yinan Wang, and Daren Lyu
EGUsphere, https://doi.org/10.5194/egusphere-2023-3008, https://doi.org/10.5194/egusphere-2023-3008, 2024
Preprint archived
Short summary
Short summary
This study identified a noteworthy time-lagged correlation between hurricane intensity and stratospheric gravity wave intensities during hurricane intensification. Meanwhile, the study reveals distinct frequencies, horizontal wavelengths, and vertical wavelengths in the inner core region during hurricane intensification, offering essential insights for monitoring hurricane intensity via satellite observations of stratospheric gravity waves.
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
Geosci. Model Dev., 16, 5197–5217, https://doi.org/10.5194/gmd-16-5197-2023, https://doi.org/10.5194/gmd-16-5197-2023, 2023
Short summary
Short summary
We introduce new and revised chemistry and physics modules in the Massive-Parallel Trajectory Calculations (MPTRAC) Lagrangian transport model aiming to improve the representation of volcanic SO2 transport and depletion. We test these modules in a case study of the Ambae eruption in July 2018 in which the SO2 plume underwent wet removal and convection. The lifetime of SO2 shows highly variable and complex dependencies on the atmospheric conditions at different release heights.
Congcong Qiao, Song Liu, Juan Huo, Xihan Mu, Ping Wang, Shengjie Jia, Xuehua Fan, and Minzheng Duan
Atmos. Meas. Tech., 16, 1539–1549, https://doi.org/10.5194/amt-16-1539-2023, https://doi.org/10.5194/amt-16-1539-2023, 2023
Short summary
Short summary
We established a spectral-fitting method to derive precipitable water vapor (PWV) and aerosol optical depth based on a strict radiative transfer theory by the spectral measurements of direct sun from EKO MS711 and MS712 spectroradiometers. The retrievals were compared with that of the colocated CE-318 photometer; the results showed a high degree of consistency. In the PWV inversion, a strong water vapor absorption band around 1370 nm is introduced to retrieve PWV in a relatively dry atmosphere.
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022, https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary
Short summary
Small-scale turbulence plays a vital role in the vertical exchange of heat, momentum and mass in the atmosphere. There are currently three models that can use spectrum width data of MST radar to calculate turbulence parameters. However, few studies have explored the applicability of the three calculation models. We compared and analysed the turbulence parameters calculated by three models. These results can provide a reference for the selection of models for calculating turbulence parameters.
Lu Yao, Yi Liu, Dongxu Yang, Zhaonan Cai, Jing Wang, Chao Lin, Naimeng Lu, Daren Lyu, Longfei Tian, Maohua Wang, Zengshan Yin, Yuquan Zheng, and Sisi Wang
Atmos. Meas. Tech., 15, 2125–2137, https://doi.org/10.5194/amt-15-2125-2022, https://doi.org/10.5194/amt-15-2125-2022, 2022
Short summary
Short summary
A physics-based SIF retrieval algorithm, IAPCAS/SIF, is introduced and applied to OCO-2 and TanSat measurements. The strong linear relationship between OCO-2 SIF retrieved by IAPCAS/SIF and the official product indicates the algorithm's reliability. The good consistency in the spatiotemporal patterns and magnitude of the OCO-2 and TanSat SIF products suggests that the combinative usage of multi-satellite products has potential and that such work would contribute to further research.
Lars Hoffmann, Paul F. Baumeister, Zhongyin Cai, Jan Clemens, Sabine Griessbach, Gebhard Günther, Yi Heng, Mingzhao Liu, Kaveh Haghighi Mood, Olaf Stein, Nicole Thomas, Bärbel Vogel, Xue Wu, and Ling Zou
Geosci. Model Dev., 15, 2731–2762, https://doi.org/10.5194/gmd-15-2731-2022, https://doi.org/10.5194/gmd-15-2731-2022, 2022
Short summary
Short summary
We describe the new version (2.2) of the Lagrangian transport model MPTRAC, which has been ported for application on GPUs. The model was verified by comparing kinematic trajectories and synthetic tracer simulations for the free troposphere and stratosphere from GPUs and CPUs. Benchmarking showed a speed-up of a factor of 16 of GPU-enabled simulations compared to CPU-only runs, indicating the great potential of applying GPUs for Lagrangian transport simulations on upcoming HPC systems.
Siming Zheng, Juan Huo, Wenbing Cai, Yinhui Zhang, Peng Li, Gaoyuan Zhang, Baofeng Ji, Jiafeng Zhou, and Congzheng Han
Atmos. Meas. Tech., 15, 1675–1687, https://doi.org/10.5194/amt-15-1675-2022, https://doi.org/10.5194/amt-15-1675-2022, 2022
Short summary
Short summary
We demonstrated the processing of millimeter wave link data with a time resolution of 1 min for 60 dry periods from August 2020 to July 2021. We have proposed a new method for extracting water vapor attenuation values and applied this method to data processing within this year. We found that the water vapor density value obtained from the millimeter wave link is highly correlated with the actual measurement value of the weather station.
Cited articles
Adhikari, L., Wang, Z., and Deng, M.: Seasonal variations of antarctic
clouds observed by cloudsat and calipso satellites, J. Geophys. Res.-Atmos.,
117, D04202, https://doi.org/10.1029/2011JD016719, 2012.
American Meteorological Society: Cirrus. Glossary of
Meteorology, available at: http://glossary.ametsoc.org/wiki/Cirrus (last access: 11 November 2020), 2019.
Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice and
cloud microphysical parameters using the CloudSat millimeter-wave radar and
temperature, J. Geophys. Res.-Atmos., 114, D00A23, https://doi.org/10.1029/2008JD010049, 2009.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., and Sumida, Y.: An introduction to himawari-8/9 — Japan's new-generation geostationary meteorological satellites, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016 (data available at: https://www.eorc.jaxa.jp/ptree/userguide.html, last access: 11 November 2020).
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.,
Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in climate
change 2013: The physical science basis. Contribution of working group I to
the fifth assessment report of the intergovernmental panel on climate
change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge Univ. Press,Cambridge,
UK and New York, NY, USA, 2013.
Cotton, R. J., Field, P. R., Ulanowski, Z., Kaye, P. H., Hirst, E.,
Greenaway, R. S., Crawford, I., Crosier, J., and Dorsey, J.: The effective
density of small ice particles obtained from in situ aircraft observations
of mid-latitude cirrus, Q. J. Roy. Meteor. Soc., 139, 1923–1934,
https://doi.org/10.1002/qj.2058, 2013.
Delanoë, J. and Hogan, R. J.: A variational scheme for retrieving ice
cloud properties from combined radar, lidar, and infrared radiometer. J.
Geophys. Res.-Atmos., 113, D07204, https://doi.org/10.1029/2007jd009000, 2008.
Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS retrievals
of the properties of ice clouds, J. Geophys. Res.-Atmos., 115, D00H29, https://doi.org/10.1029/2009jd012346, 2010.
Deng, M., Mace, G. G., Wang, Z., and Okamoto, H.: Tropical composition, cloud
and climate coupling experiment validation for cirrus cloud profiling
retrieval using CloudSat radar and CALIPSO Lidar, J. Geophys. Res., 115, D00J15,
https://doi.org/10.1029/2009JD013104, 2010.
Deng, M., Mace, G. G., Wang, Z., and Berry, E.: CloudSat 2C-ICE product
update with a new Ze parameterization in lidar-only region, J. Geophys. Res.-Atmos., 120, 12198–12208, https://doi.org/10.1002/2015jd023600, 2015.
Dolinar, E. K., Dong, X., Xi, B., Jiang, J. H., Loeb, N. G., Campbell, J. R., and Su, H.: A global record of single-layered ice cloud properties and
associated radiative heating rate profiles from an A-train perspective,
Clim. Dynam., 53, 3069–3088, https://doi.org/10.1007/s00382-019-04682-8, 2019.
Ge, J., Wang, Z., Liu, Y., Su, J., Wang, C., and Dong, Z.: Linkages between
mid-latitude cirrus cloud properties and large-scale meteorology at the
SACOL site, Clim. Dynam., 53, 5035–5046,
https://doi.org/10.1007/s00382-019-04843-9, 2019.
Gultepe, I. and Heymsfield, A. J.: Introduction ice fog, ice clouds, and
remote sensing, Pure Appl. Geophys., 173, 2977–2982, https://doi.org/10.1007/s00024-016-1380-2, 2016.
Hahn, C. J. and Warren, S. G.: A gridded climatology of clouds over land
(1971–96) and ocean (1954–97) from surface observations worldwide. Numeric
Data Product NDP-026E, Carbon Dioxide Information Analysis Center, Oak Ridge
National Laboratory, Oak Ridge, USA, 2007.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.bd0915c6, 2018.
Heymsfield, A. J., Protat, A., Bouniol, D., Austin, R. T., Hogan, R. J.,
Delanoë, J., Okamoto, H., Sato, K., Zadelhoff, G.-J., Donovan, D. P., and
Wang, Z.: Testing iwc retrieval methods using radar and ancillary
measurements with in situ data, J. Appl. Meteorol. Clim., 47, 135–163,
https://doi.org/10.1175/2007jamc1606.1, 2008.
Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice cloud particle size
distributions and pressure-dependent terminal velocities from in situ
observations at temperatures from 0∘ to 86 ∘C, J. Atmos. Sci., 70, 4123–4154, https://doi.org/10.1175/JAS-D-12-0124.1, 2013.
Heymsfield, A. J., Krämer, M., Luebke, A., Brown, P., Cziczo, D. J.,
Franklin, C., Lawson, P., Lohmann, U., McFarquhar, G., Ulanowski, Z., and
Tricht, K. V.: Cirrus clouds, Meteor. Mon., 58, 2.1–2.26, https://doi.org/10.1175/amsmonographs-d-16-0010.1, 2017.
Heymsfield, A. J., Bansemer, A., Wood, N. B., Liu, G., Tanelli, S., Sy, O. O.,
Poellot, M., and Liu, C.: Toward improving ice water content and snow-rate
retrievals from radars. Part II: Results from three wavelength
radar–collocated in situ measurements and CloudSat–GPM–TRMM radar data,
J. Appl. Meteorol. Clim., 57, 365–389, https://doi.org/10.1175/jamc-d-17-0164.1,
2018.
Hogan, R. J., Mittermaier, M. P., and Illingworth, A. J.: The retrieval of
ice water content from radar reflectivity factor and temperature and its use
in evaluating a mesoscale model, J. Appl. Meteorol. Clim., 45, 301–317,
https://doi.org/10.1175/jam2340.1, 2006.
Hong, Y. and Liu, G.: The characteristics of ice cloud properties derived
from CloudSat and CALIPSO measurements, J. Climate, 28, 3880–3901, https://doi.org/10.1175/jcli-d-14-00666.1, 2015.
Huo, J., Bi, Y., Lu, D., and Duan, S.: Cloud classification and distribution
of cloud types in Beijing using Ka band radar data, Adv. Atmos. Sci., 36,
1–11, https://doi.org/10.1007/s00376-019-8272-1, 2019.
Huo, J., Han, C., Duan, M., Wu, X., Bi, Y., and Tian, Y.: Particle
reflectivity and movements in cirrus clouds over Beijing from four years of
Ka radar measurements, Atmos. Res., 105211,
https://doi.org/10.1016/j.atmosres.2020.105211, 2020.
Jensen, E. J., Toon, O. B., Selkirk, H. B., Spinhirne, J. D., and Schoeberl,
M. R.: On the formation and persistence of subvisible cirrus clouds near the
tropical tropopause, J. Geophys. Res.-Atmos., 101, 21361–21375, https://doi.org/10.1029/95jd03575, 1996.
Joos, H., Spichtinger, P., Reutter, P., and Fusina, F.: Influence of heterogeneous freezing on the microphysical and radiative properties of orographic cirrus clouds, Atmos. Chem. Phys., 14, 6835–6852, https://doi.org/10.5194/acp-14-6835-2014, 2014.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of ice nucleating particles.
Meteor. Mon., 58, 1.1–1.33, https://doi.org/10.1175/amsmonographs-d-16-0006.1, 2017.
Kärcher, B.: Formation and radiative forcing of contrail cirrus, Nat.
Commun., 9, 1824, https://doi.org/10.1038/s41467-018-04068-0, 2018.
Kawamoto, K., Nakajima, T., and Nakajima, T. Y.: A global determination of
cloud microphysics with AVHRR remote sensing, J. Climate, 14, 2054–2068,
https://doi.org/10.1175/1520-0442(2001)014<2054:Agdocm>2.0.Co;2,
2001.
Kienast-Sjögren, E., Rolf, C., Seifert, P., Krieger, U. K., Luo, B. P., Krämer, M., and Peter, T.: Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements, Atmos. Chem. Phys., 16, 7605–7621, https://doi.org/10.5194/acp-16-7605-2016, 2016.
Kollias, P., Clothiaux, E. E., Miller, M. A., Albrecht, B. A., Stephens, G.
L., and Ackerman, T. P.: Millimeter-wavelength radars: New frontier in
atmospheric cloud and precipitation research, B. Am. Meteorol. Soc., 88,
1608–1624, https://doi.org/10.1175/bams-88-10-1608, 2007.
Kox, S., Bugliaro, L., and Ostler, A.: Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing, Atmos. Meas. Tech., 7, 3233–3246, https://doi.org/10.5194/amt-7-3233-2014, 2014.
Krämer, M., Rolf, C., Luebke, A., Afchine, A., Spelten, N., Costa, A., Meyer, J., Zöger, M., Smith, J., Herman, R. L., Buchholz, B., Ebert, V., Baumgardner, D., Borrmann, S., Klingebiel, M., and Avallone, L.: A microphysics guide to cirrus clouds – Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463–3483, https://doi.org/10.5194/acp-16-3463-2016, 2016.
Krämer, M., Rolf, C., Spelten, N., Afchine, A., Fahey, D., Jensen, E., Khaykin, S., Kuhn, T., Lawson, P., Lykov, A., Pan, L. L., Riese, M., Rollins, A., Stroh, F., Thornberry, T., Wolf, V., Woods, S., Spichtinger, P., Quaas, J., and Sourdeval, O.: A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations, Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, 2020.
Lawson, R. P., Woods, S., Jensen, E., Erfani, E., Gurganus, C., Gallagher,
M., Connolly, P., Whiteway, J., Baran, A. J., May, P., Heymsfield, A.,
Schmitt, C. G., McFarquhar, G., Um, J., Protat, A., Bailey, M., Lance, S.,
Muehlbauer, A., Stith, J., Korolev, A., Toon, O. B., and Krämer, M.: A
review of ice particle shapes in cirrus formed in situ and in anvils, J.
Geophys. Res.-Atmos., 124, 10049–10090,
https://doi.org/10.1029/2018JD030122, 2019.
Liu, C.-L. and Illingworth, A. J.: Toward more accurate retrievals of ice
water content from radar measurements of clouds, J. Appl. Meteorol., 39,
1130–1146, https://doi.org/10.1175/1520-0450(2000)039<1130:Tmaroi>2.0.Co;2, 2000.
Luebke, A. E., Afchine, A., Costa, A., Grooß, J.-U., Meyer, J., Rolf, C., Spelten, N., Avallone, L. M., Baumgardner, D., and Krämer, M.: The origin of midlatitude ice clouds and the resulting influence on their microphysical properties, Atmos. Chem. Phys., 16, 5793–5809, https://doi.org/10.5194/acp-16-5793-2016, 2016.
Mace, G., Benson, S., and Vernon, E.: Cirrus clouds and the large-scale
atmospheric state: Relationships revealed by six years of ground-based data,
J. Clim. Appl. Meteor., 19, 3257–3278, https://doi.org/10.1175/JCLI3786.1, 2006.
Matrosov, S. Y. and Heymsfield, A. J.: Empirical relations between size
parameters of ice hydrometeor populations and radar reflectivity, J. Appl.
Meteorol. Clim., 56, 2479–2488, https://doi.org/10.1175/jamc-d-17-0076.1, 2017.
Muhlbauer, A., Ackerman, T. P., Comstock, J. M., Diskin, G. S., Evans, S.
M., Lawson, R. P., and Marchand, R. T.: Impact of large-scale dynamics on the
microphysical properties of midlatitude cirrus, J. Geophys. Res.-Atmos.,
119, 3976–3996, https://doi.org/10.1002/2013JD020035, 2014.
Nakajima, T. Y. and Nakajma, T.: Wide-area determination of cloud
microphysical properties from noaa avhrr measurements for fire and astex
regions, J. Atmos. Sci., 52, 4043–4059, https://doi.org/10.1175/1520-0469(1995)052<4043:Wadocm>2.0.Co;2, 1995.
Pokharel, B. and Vali, G.: Evaluation of collocated measurements of radar
reflectivity and particle sizes in ice clouds, J. Appl. Meteorol. Clim.,
50, 2104–2119, 2011.
Runheng, H. and Liou, K.-N.: Effects of horizontal orientation on the
radiative properties of ice clouds, Adv. Atmos. Sci., 2, 20–27, https://doi.org/10.1007/BF03179733, 1985.
Sassen, K., Wang, Z., and Liu, D.: Global distribution of cirrus clouds from
CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) measurements, J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972,
2008.
Sassen, K., Wang, Z., and Liu, D.: Cirrus clouds and deep convection in the
tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res.-Atmos., 114,
D00H06, https://doi.org/10.1029/2009JD011916, 2009.
Stubenrauch, C. J., Chedin, A., Radel, G., Scott, N. A., and Serrar, S.:
Cloud properties and their seasonal and diurnal variability from TOVS
path-B, J. Climate, 19, 5531–5553, https://doi.org/10.1175/JCLI3929.1, 2006.
Wang, Z. and Sassen, K.: Cirrus cloud microphysical property retrieval using
lidar and radar measurements. Part I: Algorithm description and comparison
with in situ data, J. Appl. Meteorol., 41, 218–229,
https://doi.org/10.1175/1520-0450(2002)041<0218:CCMPRU>2.0.CO;2,
2001a.
Wang, Z. and Sassen, K.: Cloud type and macrophysical property retrieval
using multiple remote sensors, J. Appl. Meteorol., 40, 1665–1682, https://doi.org/10.1175/1520-0450(2001)040<1665:Ctampr>2.0.Co;2, 2001b.
Wolf, V., Kuhn, T., Milz, M., Voelger, P., Krämer, M., and Rolf, C.: Arctic ice clouds over northern Sweden: microphysical properties studied with the Balloon-borne Ice Cloud particle Imager B-ICI, Atmos. Chem. Phys., 18, 17371–17386, https://doi.org/10.5194/acp-18-17371-2018, 2018.
Wu, D. L., Austin, R. T., Deng, M., Durden, S. L., Heymsfield, A. J., Jiang,
J. H., Lambert, A., Li, J.-L., Livesey, N. J., McFarquhar, G. M., Pittman,
J. V., Stephens, G. L., Tanelli, S., Vane, D. G., and Waliser, D. E.:
Comparisons of global cloud ice from MLS, CloudSat, and correlative data
sets, J. Geophys. Res.-Atmos., 114, D00A24, https://doi.org/10.1029/2008jd009946, 2009.
Yang, P. and Fu, Q.: Dependence of ice crystal optical properties on
particle aspect ratio, J. Quant. Spectrosc. Ra., 110, 1604–1614,
https://doi.org/10.1016/j.jqsrt.2009.03.004, 2009.
Yang, P., Liou, K. N., Bi, L., Liu, C., Yi, B., and Baum, B. A.: On the radiative
properties of ice clouds: Light scattering, remote sensing, and radiation
parameterization, Adv. Atmos. Sci., 32, 32–63,
https://doi.org/10.1007/s00376-014-0011-z, 2015.
Zelinka, M. D., Klein, S. A., and Hartmann, D. L.: Computing and partitioning
cloud feedbacks using cloud property histograms. Part I: Cloud radiative
kernels, J. Climate, 25, 3715–3735, 2012.
Short summary
A detailed analysis of ice cloud physical properties is presented based on 4 years of surface Ka-band radar measurements in Beijing, where the summer oceanic monsoon from the ocean and winter continental monsoon prevail alternately. More than 6000 ice cloud clusters were studied to investigate their physical properties, such as height, horizontal extent, temperature dependence and origination type, which can serve as a reference for parameterization and characterization in global climate models.
A detailed analysis of ice cloud physical properties is presented based on 4 years of surface...
Altmetrics
Final-revised paper
Preprint