Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-13929-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-13929-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Baffin Bay sea ice extent and synoptic moisture transport drive water vapor isotope (δ18O, δ2H, and deuterium excess) variability in coastal northwest Greenland
Institut des Géosciences et l'Environnement, CNRS, 38400 Saint Martin d'Hères, France
Ben G. Kopec
Department of Biological Sciences, University of Alaska Anchorage,
99508 Anchorage, AK, USA
Kyle S. Mattingly
Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers University, 08854 Piscataway, NJ, USA
Eric S. Klein
Department of Geological Sciences, University of Alaska Anchorage,
99508 Anchorage, AK, USA
Douglas Causey
Department of Biological Sciences, University of Alaska Anchorage,
99508 Anchorage, AK, USA
Jeffrey M. Welker
Department of Biological Sciences, University of Alaska Anchorage,
99508 Anchorage, AK, USA
Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland
University of the Arctic (UArctic), c/o University of Lapland, 96101 Rovaniemi, Finland
Related authors
Adrien Ooms, Mathieu Casado, Ghislain Picard, Laurent Arnaud, Maria Hörhold, Andrea Spolaor, Rita Traversi, Joel Savarino, Patrick Ginot, Pete Akers, Birthe Twarloh, and Valérie Masson-Delmotte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3259, https://doi.org/10.5194/egusphere-2025-3259, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This work presents a new approach to the estimation of accumulation rates at Concordia Station, East-Antarctica, for the last 20 years, from a new data set of chemical tracers and snow micro-scale properties measured in a snow trench. Multi-annual and meter to decameter scale variability of accumulation rates are compared again in-situ measurements of surface laser scanner and stake farm, with very good agreement. This further constrains SMB estimation for Antarctica at high temporal resolution.
Agnese Petteni, Elise Fourré, Elsa Gautier, Azzurra Spagnesi, Roxanne Jacob, Pete D. Akers, Daniele Zannoni, Jacopo Gabrieli, Olivier Jossoud, Frédéric Prié, Amaëlle Landais, Titouan Tcheng, Barbara Stenni, Joel Savarino, Patrick Ginot, and Mathieu Casado
EGUsphere, https://doi.org/10.5194/egusphere-2024-3335, https://doi.org/10.5194/egusphere-2024-3335, 2025
Short summary
Short summary
Our research compares three CFA-CRDS systems from Venice, Paris, and Grenoble for measuring water isotopes in ice cores, crucial for reconstructing past climate. We quantify each system’s mixing and measurement noise effects, which impact the achievable resolution of isotope continuous records. Our findings reveal specific configurations and procedures to enhance measurement accuracy, providing a framework to optimise water isotope analysis.
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023, https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary
Short summary
Ammonia is a reactive gas in our atmosphere that is key in air quality issues. Assessing its emissions and how it reacts is a hot topic that can be addressed from the past. Stable isotopes (the mass of the molecule) measured in ice cores (glacial archives) can teach us a lot. However, the concentrations in ice cores are very small. We propose a protocol to limit the contamination and apply it to one ice core drilled in Mont Blanc, describing the opportunities our method brings.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Ben G. Kopec, Pete D. Akers, Eric S. Klein, and Jeffery M. Welker
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-276, https://doi.org/10.5194/tc-2020-276, 2020
Manuscript not accepted for further review
Short summary
Short summary
Significant mass loss to the Greenland Ice Sheet has occurred over recent decades, marked by a record summer melt season in 2019. Water vapor fluxes from the ice sheet surface, including sublimation and meltwater evaporation, are a growing component of the mass balance. Using water vapor isotope measurements in northwest Greenland, we identify the signal of these fluxes and show how they correspond with melt extent. These vapor fluxes contribute ~20 % of water vapor advected off the ice sheet.
Adrien Ooms, Mathieu Casado, Ghislain Picard, Laurent Arnaud, Maria Hörhold, Andrea Spolaor, Rita Traversi, Joel Savarino, Patrick Ginot, Pete Akers, Birthe Twarloh, and Valérie Masson-Delmotte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3259, https://doi.org/10.5194/egusphere-2025-3259, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This work presents a new approach to the estimation of accumulation rates at Concordia Station, East-Antarctica, for the last 20 years, from a new data set of chemical tracers and snow micro-scale properties measured in a snow trench. Multi-annual and meter to decameter scale variability of accumulation rates are compared again in-situ measurements of surface laser scanner and stake farm, with very good agreement. This further constrains SMB estimation for Antarctica at high temporal resolution.
Shaakir Shabir Dar, Eric Klein, Pertti Ala-aho, Hannu Marttila, Sonja Wahl, and Jeffrey Welker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2724, https://doi.org/10.5194/egusphere-2025-2724, 2025
Short summary
Short summary
Using laser based instruments, we observed snow turning directly to vapor inside the pack and at its surface. In cold, calm weather vapor moves slowly upward; on warmer, windy days air pushes vapor deeper into the snow. These dynamics control snow loss and must be included in hydrological and climate models.
Agnese Petteni, Elise Fourré, Elsa Gautier, Azzurra Spagnesi, Roxanne Jacob, Pete D. Akers, Daniele Zannoni, Jacopo Gabrieli, Olivier Jossoud, Frédéric Prié, Amaëlle Landais, Titouan Tcheng, Barbara Stenni, Joel Savarino, Patrick Ginot, and Mathieu Casado
EGUsphere, https://doi.org/10.5194/egusphere-2024-3335, https://doi.org/10.5194/egusphere-2024-3335, 2025
Short summary
Short summary
Our research compares three CFA-CRDS systems from Venice, Paris, and Grenoble for measuring water isotopes in ice cores, crucial for reconstructing past climate. We quantify each system’s mixing and measurement noise effects, which impact the achievable resolution of isotope continuous records. Our findings reveal specific configurations and procedures to enhance measurement accuracy, providing a framework to optimise water isotope analysis.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Moein Mellat, Amy R. Macfarlane, Camilla F. Brunello, Martin Werner, Martin Schneebeli, Ruzica Dadic, Stefanie Arndt, Kaisa-Riikka Mustonen, Jeffrey M. Welker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-719, https://doi.org/10.5194/egusphere-2024-719, 2024
Preprint archived
Short summary
Short summary
Our research, utilizing data from the Arctic MOSAiC expedition, reveals how snow on Arctic sea ice changes due to weather conditions. By analyzing snow samples collected over a year, we found differences in snow layers that tell us about their origins and how they've been affected by the environment. We discovered variations in snow and vapour that reflect the influence of weather patterns and surface processes like wind and sublimation.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Brian Kahn, Cameron Bertossa, Xiuhong Chen, Brian Drouin, Erin Hokanson, Xianglei Huang, Tristan L'Ecuyer, Kyle Mattingly, Aronne Merrelli, Tim Michaels, Nate Miller, Federico Donat, Tiziano Maestri, and Michele Martinazzo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2463, https://doi.org/10.5194/egusphere-2023-2463, 2023
Preprint archived
Short summary
Short summary
A cloud detection mask algorithm is developed for the upcoming Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) satellite mission to be launched by NASA in May 2024. The cloud mask is compared to "truth" and is capable of detecting over 90 % of all clouds globally tested with simulated data, and about 87 % of all clouds in the Arctic region.
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023, https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary
Short summary
Ammonia is a reactive gas in our atmosphere that is key in air quality issues. Assessing its emissions and how it reacts is a hot topic that can be addressed from the past. Stable isotopes (the mass of the molecule) measured in ice cores (glacial archives) can teach us a lot. However, the concentrations in ice cores are very small. We propose a protocol to limit the contamination and apply it to one ice core drilled in Mont Blanc, describing the opportunities our method brings.
Diana Francis, Ricardo Fonseca, Kyle S. Mattingly, Stef Lhermitte, and Catherine Walker
The Cryosphere, 17, 3041–3062, https://doi.org/10.5194/tc-17-3041-2023, https://doi.org/10.5194/tc-17-3041-2023, 2023
Short summary
Short summary
Role of Foehn Winds in ice and snow conditions at the Pine Island Glacier, West Antarctica.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Short summary
The unexpected September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which occurred almost a decade earlier than expected, was triggered by atmospheric extremes. Explosive twin polar cyclones provided a deterministic role in this event by creating oceanward sea surface slope triggering the calving. The observed record-anomalous atmospheric conditions were promoted by blocking ridges and Antarctic-wide anomalous poleward transport of heat and moisture.
Ben G. Kopec, Pete D. Akers, Eric S. Klein, and Jeffery M. Welker
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-276, https://doi.org/10.5194/tc-2020-276, 2020
Manuscript not accepted for further review
Short summary
Short summary
Significant mass loss to the Greenland Ice Sheet has occurred over recent decades, marked by a record summer melt season in 2019. Water vapor fluxes from the ice sheet surface, including sublimation and meltwater evaporation, are a growing component of the mass balance. Using water vapor isotope measurements in northwest Greenland, we identify the signal of these fluxes and show how they correspond with melt extent. These vapor fluxes contribute ~20 % of water vapor advected off the ice sheet.
Cited articles
Addinsoft: XLSTAT statistical and data analysis solution, available at:
https://www.xlstat.com, last access: 5 April 2020.
Aemisegger, F.: On the link between the North Atlantic storm track and
precipitation deuterium excess in Reykjavik, Atmos. Sci. Lett., 19, e865,
https://doi.org/10.1002/asl.865, 2018.
Aemisegger, F. and Papritz, L.: A climatology of strong large-scale ocean
evaporation events. Part I: Identification, global distribution, and
associated climate conditions, J. Climate, 31, 7287–7312, 2018.
Aemisegger, F. and Sjolte, J.: A climatology of strong large-scale ocean
evaporation events. Part II: relevance for the deuterium excess signature of
the evaporation flux, J. Climate, 31, 7313–7336, https://doi.org/10.1175/JCLI-D-17-0592.1, 2018.
Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., and
Wernli, H.: Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study, Atmos. Meas. Tech., 5, 1491–1511, https://doi.org/10.5194/amt-5-1491-2012, 2012.
Aemisegger, F., Pfahl, S., Sodemann, H., Lehner, I., Seneviratne, S. I., and Wernli, H.: Deuterium excess as a proxy for continental moisture recycling and plant transpiration, Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, 2014.
Akers, P. D., Welker, J. M., and Brook, G. A.: Reassessing the role of
temperature in precipitation oxygen isotopes across the eastern and central
United States through weekly precipitation-day data, Water Resour. Res., 53,
7644–7661, 2017.
Akers, P. D., Welker, J. M., and Kopec, B. G.: Thule, Greenland, 10 minute water vapor isotopes (δ18O, δD, d-excess), August 2017–August 2019, Arctic Data Center, https://doi.org/10.18739/A21J9779S, 2020.
Atkinson, B. W.: Meso-scale atmospheric circulations, Academic Press, London, 495 pp., 1981.
Bailey, A., Toohey, D., and Noone, D.: Characterizing moisture exchange between the Hawaiian convective boundary layer and free troposphere using
stable isotopes in water, J. Geophys. Res.-Atmos., 118, 8208–8221, 2013.
Bailey, A., Noone, D., Berkelhammer, M., Steen-Larsen, H. C., and Sato, P.:
The stability and calibration of water vapor isotope ratio measurements during long-term deployments, Atmos. Meas. Tech., 8, 4521–4538,
https://doi.org/10.5194/amt-8-4521-2015, 2015.
Bailey, H. L., Kaufman, D. S., Henderson, A. C. G., and Leng, M. J.: Synoptic scale controls on the δ18O in precipitation across Beringia, Geophys. Res. Lett., 42, 4608–4616, https://doi.org/10.1002/2015gl063983, 2015.
Ballinger, T. J., Hanna, E., Hall, R. J., Miller, J., Ribergaard, M. H., and
Høyer, J. L.: Greenland coastal air temperatures linked to Baffin Bay and
Greenland Sea ice conditions during autumn through regional blocking patterns, Clim. Dynam., 50, 83–100, 2018.
Ballinger, T. J., Mote, T. L., Mattingly, K., Bliss, A. C., Hanna, E., van As, D., Prieto, M., Gharehchahi, S., Fettweis, X., Noël, B., Smeets, P. C. J. P., Reijmer, C. H., Ribergaard, M. H., and Cappelen, J.: Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events, The Cryosphere, 13, 2241–2257, https://doi.org/10.5194/tc-13-2241-2019, 2019.
Barber, D. G., Hanesiak, J. M., Chan, W., and Piwowar, J.: Sea-ice and
meteorological conditions in Northern Baffin Bay and the North Water polynya
between 1979 and 1996, Atmos. Ocean, 39, 343–359, 2001.
Bastrikov, V., Steen-Larsen, H. C., Masson-Delmotte, V., Gribanov, K., Cattani, O., Jouzel, J., and Zakharov, V.: Continuous measurements of atmospheric water vapour isotopes in western Siberia (Kourovka), Atmos. Meas. Tech., 7, 1763–1776, https://doi.org/10.5194/amt-7-1763-2014, 2014.
Bhatt, U. S., Walker, D. A., Raynolds, M. K., Bieniek, P. A., Epstein, H.
E., Comiso, J. C., Pinzon, J. E., Tucker, C. J., Steele, M., Ermold, W., and
Zhang, J.: Changing seasonality of panarctic tundra vegetation in relationship to climatic variables, Environ. Res. Lett., 12, 055003, https://doi.org/10.18739/A20000151, 2017.
Bjørk, A. A., Aagaard, S., Lütt, A., Khan, S. A., Box, J. E., Kjeldsen, K. K., Larsen, N. K., Korsgaard, N. J., Cappelen, J., Colgan, W. T., Machguth, H., Andresen, C. S., Peings, Y., and Kjær, K. H.: Changes
in Greenland's peripheral glaciers linked to the North Atlantic Oscillation,
Nat. Clim. Change, 8, 48–52, 2018.
Bonne, J. L., Masson-Delmotte, V., Cattani, O., Delmotte, M., Risi, C., Sodemann, H., and Steen-Larsen, H. C.: The isotopic composition of water
vapour and precipitation in Ivittuut, southern Greenland, Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, 2014.
Bonne, J. L., Steen-Larsen, H. C., Risi, C., Werner, M., Sodemann, H., Lacour, J. L., Fettweis, X., Cesana, G., Delmotte, M., Cattani, O., Vallelonga, P., Kjaer, H. A., Clerbaux, C., Sveinbjornsdottir, A. E., and
Masson-Delmotte, V.: The summer 2012 Greenland heat wave: In situ and remote
sensing observations of water vapor isotopic composition during an atmospheric river event, J. Geophys. Res.-Atmos., 120, 2970–2989,
https://doi.org/10.1002/2014jd022602, 2015.
Bonne, J. L., Behrens, M., Meyer, H., Kipfstuhl, S., Rabe, B., Schonicke, L., Steen-Larsen, H. C., and Werner, M.: Resolving the controls of water vapour isotopes in the Atlantic sector, Nat. Commun., 10, 1632, https://doi.org/10.1038/s41467-019-09242-6, 2019.
Bonne, J.-L., Meyer, H., Behrens, M., Boike, J., Kipfstuhl, S., Rabe, B., Schmidt, T., Schönicke, L., Steen-Larsen, H. C., and Werner, M.: Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia, Atmos. Chem. Phys., 20, 10493–10511, https://doi.org/10.5194/acp-20-10493-2020, 2020.
Box, J. E. and Steffen, K.: Sublimation on the Greenland Ice Sheet from automated weather station observations, J. Geophys. Res.-Atmos., 106,
33965–33981, https://doi.org/10.1029/2001jd900219, 2001.
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012.
Bréant, C., Dos Santos, C. L., Agosta, C., Casado, M., Fourre, E., Goursaud, S., Masson-Delmotte, V., Favier, V., Cattani, O., Prie, F., Golly,
B., Orsi, A., Martinerie, P., and Landais, A.: Coastal water vapor isotopic
composition driven by katabatic wind variability in summer at Dumont d'Urville, coastal East Antarctica, Earth Planet. Sc. Lett., 514, 37–47, https://doi.org/10.1016/j.epsl.2019.03.004, 2019.
Carr, J. R., Vieli, A., and Stokes, C.: Influence of sea ice decline, atmospheric warming, and glacier width on marine-terminating outlet glacier
behavior in northwest Greenland at seasonal to interannual timescales, J.
Geophys. Res.-Earth, 118, 1210–1226, https://doi.org/10.1002/jgrf.20088, 2013.
Casado, M., Landais, A., Masson-Delmotte, V., Genthon, C., Kerstel, E., Kassi, S., Arnaud, L., Picard, G., Prie, F., Cattani, O., Steen-Larsen, H. C., Vignon, E., and Cermak, P.: Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau, Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, 2016.
Casado, M., Landais, A., Picard, G., Münch, T., Laepple, T., Stenni, B., Dreossi, G., Ekaykin, A., Arnaud, L., Genthon, C., Touzeau, A., Masson-Delmotte, V., and Jouzel, J.: Archival processes of the water stable isotope signal in East Antarctic ice cores, The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, 2018.
Castro de la Guardia, L., Hu, X., and Myers, P. G.: Potential positive feedback between Greenland Ice Sheet melt and Baffin Bay heat content on the
west Greenland shelf, Geophys. Res. Lett., 42, 4922–4930,
https://doi.org/10.1002/2015gl064626, 2015.
Chen, Q., Bromwich, D. H., and Bai, L.: Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity, J. Climate, 10, 839–870, https://doi.org/10.1175/1520-0442(1997)010<0839:pogrba>2.0.co;2, 1997.
Christner, E., Kohler, M., and Schneider, M.: The influence of snow sublimation and meltwater evaporation on δD of water vapor in the atmospheric boundary layer of central Europe, Atmos. Chem. Phys., 17,
1207–1225, https://doi.org/10.5194/acp-17-1207-2017, 2017.
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T. J., Bhatt, U. S., Chen, H. W., Coumou, D., Feldstein, S., Gu,
H., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F.,
Lee, S., Linderholm, H. W., Maslowski, W., Peings, Y., Pfeiffer, K., Rigor,
I., Semmler, T., Stroeve, J., Taylor, P. C., Vavrus, S., Vihma, T., Wang, S., Wendisch, M., Wu, Y., and Yoon, J.: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather, Nat. Clim.
Change, 10, 20–29, 2020.
Coplen, T. B., Neiman, P. J., White, A. B., Landwehr, J. M., Ralph, F. M.,
and Dettinger, M. D.: Extreme changes in stable hydrogen isotopes and precipitation characteristics in a landfalling Pacific storm, Geophys. Res.
Lett., 35, L21808, https://doi.org/10.1029/2008GL035481, 2008.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702, https://doi.org/10.1126/science.133.3465.1702, 1961.
Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean
and the marine atmosphere, in: Stable Isotopes in Oceanographic Studies and
Paleotemperatures, edited by: Tongiorgi, E., Lab. Geol. Nucl., Pisa, Italy,
9–130, 1965.
Csank, A. Z., Czimczik, C. I., Xu, X., and Welker, J. M.: Seasonal patterns
of riverine carbon sources and export in NW Greenland, J. Geophys.
Res.-Biogeo., 124, 840–856, 2019.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Dansgaard, W., Johnsen, S. J., Møller, J., and Langway, C. C.: One thousand centuries of climatic record from Camp Century on the Greenland Ice
Sheet, Science, 166, 377–380, 1969.
Davini, P., Cagnazzo, C., Gualdi, S., and Navarra, A.: Bidimensional
diagnostics, variability, and trends of Northern Hemisphere blocking, J.
Climate, 25, 6496–6509, https://doi.org/10.1175/JCLI-D-12-00032.1, 2012.
Dütsch, M., Pfahl, S., and Wernli, H.: Drivers of δ2H
variations in an idealized extratropical cyclone, Geophys. Res. Lett., 43,
5401–5408, 2016.
Dütsch, M., Pfahl, S., and Sodemann, H.: The impact of nonequilibrium
and equilibrium fractionation on two different deuterium excess definitions,
J. Geophys. Res.-Atmos., 122, 12732–12746, https://doi.org/10.1002/2017jd027085, 2017.
Duynkerke, P. G., and van den Broeke, M. R.: Surface energy balance and
katabatic flow over glacier and tundra during GIMEX-91, Greenland ice margin
experiment (GIMEx), Q. J. Roy. Meteorol. Soc., 9, 17–28, 1994.
Farquhar, G. D., Cernusak, L. A., and Barnes, B.: Heavy water fractionation
during transpiration, Plant Physiol., 143, 11–18, 2007.
Feng, X., Faiia, A. M., and Posmentier, E. S.: Seasonality of isotopes in
precipitation: A global perspective, J. Geophys. Res.-Atmos., 114, D08116 https://doi.org/10.1029/2008JD011279, 2009.
Fetterer, F., Savoie, M., Helfrich, S., and Clemente-Colón, P.: Multisensor Analyzed Sea Ice Extent – Northern Hemisphere (MASIE-NH),
Version 1, NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N5GT5K3K, 2010.
Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., and Windnagel, A. K.:
Sea Ice Index, Version 3. Extent, Concentration, and Concentration Anomalies, NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N5K072F8, 2017.
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to
extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012gl051000, 2012.
Francis, J. A., Skific, N., and Vavrus, S. J.: North American weather regimes are becoming more persistent: Is Arctic Amplification a factor?, Geophys. Res. Lett., 45, 11414–11422, https://doi.org/10.1029/2018gl080252, 2018.
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev.
Earth Plant. Sci., 24, 225-262, 1996.
Gat, J. R. and Matsui, E.: Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model, J. Geophys. Res.-Atmos., 96, 13179–13188, https://doi.org/10.1029/91jd00054, 1991.
Gedzelman, S. D. and Lawrence, J. R.: The isotopic composition of precipitation from two extratropical cyclones, Mon. Weather Rev., 118, 495–509, 1990.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, 2017.
Gimeno, L., Vázquez, M., Eiras-Barca, J., Sorí, R., Algarra, I., and Nieto, R.: Atmospheric moisture transport and the decline in Arctic Sea ice, WIRES Clim. Change, 10, e588, https://doi.org/10.1002/wcc.588, 2019.
Gold, W. G. and Bliss, L. C.: Water limitations and plant community development in a polar desert, Ecology, 76, 1558–1568, 1995.
Grootes, P. M. and Stuiver, M.: Oxygen 18∕16 variability in Greenland snow
and ice with 10−3- to 105-year time resolution, J. Geophys. Res.-Oceans, 102, 26455–26470, https://doi.org/10.1029/97JC00880, 1997.
Grumet, N. S., Wake, C. P., Mayewski, P. A., Zielinski, G. A., Whitlow, S. I., Koerner, R. M., Fisher, D. A., and Woollett, J. M.: Variability of sea-ice extent in Baffin Bay over the last millennium, Climatic Change, 49,
129–145, 2001.
Gurney, S. D. and Lawrence, D. S. L.: Seasonal trends in the stable isotopic composition of snow and meltwater runoff in a subarctic catchment at Okstindan, Norway, Nord. Hydrol., 35, 119–137, 2004.
Hall, D. K. and Riggs, G. A.: MODIS/Aqua Sea Ice Extent Daily L3 Global 1 km
EASE-Grid Day, Version 6, NASA NSIDC Distributed Active Archive Center,
https://doi.org/10.5067/MODIS/MYD29P1D.006, 2015.
Heide-Jørgensen, M. P., Sinding, M. H. S., Nielsen, N. H., Rosing-Asvid, A., and Hansen, R. G.: Large numbers of marine mammals winter in the North
Water polynya, Polar Biol., 39, 1605–1614, 2016.
Hill, E. A., Carr, J. R., Stokes, C. R., and Gudmundsson, G. H.: Dynamic
changes in outlet glaciers in northern Greenland from 1948 to 2015, The
Cryosphere, 12, 3243–3263, https://doi.org/10.5194/tc-12-3243-2018, 2018.
Homeyer, C. R., Pan, L. L., Dorsi, S. W., Avallone, L. M., Weinheimer, A. J., O'Brien, A. S., DiGangi, J. P., Zondlo, M. A., Ryerson, T. B., Diskin, G. S., and Campos, T. L.: Convective transport of water vapor into the lower stratosphere observed during double-tropopause events, J. Geophys.
Res.-Atmos., 119, 10941–10958, 2014.
Hooke, R. L.: Morphology of the ice-sheet margin near Thule, Greenland, J.
Glaciol., 9, 303–324, 1970.
Howat, I.: MEaSUREs Greenland Ice Mapping Project (GIMP) Land Ice and Ocean
Classification Mask, Version 1, 90 m × 90 m, NASA NSIDC Distributed Active Archive Center, https://doi.org/10.5067/B8X58MQBFUPA, 2017.
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014.
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen,
H. B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A. E., and
White, J.: Oxygen isotope and palaeotemperature records from six Greenland
ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP,
J. Quaternary Sci., 16, 299–307, 2001.
Jouzel, J. and Merlivat, L.: Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation, J. Geophys. Res.-Atmos., 89, 11749–11757, https://doi.org/10.1029/JD089iD07p11749, 1984.
Kiemle, C., Schäfler, A., Wirth, M., Fix, A., and Rahm, S.: Detection
and analysis of water vapor transport by airborne lidars, IEEE J. Select. Top. Appl. Obs., 6, 1189–1193, 2013.
Klein, E. S., Cherry, J. E., Young, J., Noone, D., Leffler, A. J., and
Welker, J. M.: Arctic cyclone water vapor isotopes support past sea ice
retreat recorded in Greenland ice, Scient. Rep., 5, 10295, https://doi.org/10.1038/srep10295, 2015.
Klein, E. S. and Welker, J. M.: Influence of sea ice on ocean water vapor
isotopes and Greenland ice core records, Geophys. Res. Lett., 43, 12475–12483, https://doi.org/10.1002/2016GL071748, 2016.
Kopec, B. G., Lauder, A. M., Posmentier, E. S., and Feng, X.: The diel cycle
of water vapor in west Greenland, J. Geophys. Res.-Atmos., 119, 9386–9399,
2014.
Kopec, B. G., Feng, X., Michel, F. A., and Posmentier, E. S.: Influence of
sea ice on Arctic precipitation, P. Natl. A. Sci. USA, 113, 46–51, https://doi.org/10.1073/pnas.1504633113, 2016.
Kopec, B. G., Feng, X., Posmentier, E. S., and Sonder, L. J.: Seasonal
deuterium excess variations of precipitation at Summit, Greenland, and their
climatological significance, J. Geophys. Res.-Atmos., 124, 72–91,
https://doi.org/10.1029/2018JD028750, 2019.
Kurita, N.: Origin of Arctic water vapor during the ice-growth season, Geophys. Res. Lett., 38, L02709, https://doi.org/10.1029/2010GL046064, 2011.
Laidre, K. L., Atkinson, S., Regehr, E. V., Stern, H. L., Born, E. W., Wiig,
Ø., Lunn, N. J., and Dyck, M.: Interrelated ecological impacts of climate
change on an apex predator, Ecol. Appl., 30, e02071, https://doi.org/10.1002/eap.2071, 2020.
Landais, A., Capron, E., Masson-Delmotte, V., Toucanne, S., Rhodes, R., Popp, T., Vinther, B., Minster, B., and Prié, F.: Ice core evidence for decoupling between midlatitude atmospheric water cycle and Greenland temperature during the last deglaciation, Clim. Past, 14, 1405–1415, https://doi.org/10.5194/cp-14-1405-2018, 2018.
Leffler, A. J. and Welker, J. M.: Long-term increases in snow pack elevate
leaf N and photosynthesis in Salix arctica: responses to a snow fence experiment in the High Arctic of NW Greenland, Environ. Res. Lett., 8, 025023, https://doi.org/10.1088/1748-9326/8/2/025023, 2013.
Liu, C. and Barnes, E. A.: Extreme moisture transport into the Arctic linked to Rossby wave breaking, J. Geophys. Res.-Atmos., 120, 3774–3788,
https://doi.org/10.1002/2014jd022796, 2015.
Madsen, M. V., Steen-Larsen, H. C., Hoerhold, M., Box, J., Berben, S. M. P.,
Capron, E., Faber, A. K., Hubbard, A., Jensen, M. F., Jones, T. R., Kipfstuhl, S., Koldtoft, I., Pillar, H. R., Vaughn, B. H., Vladimirova, D.,
and Dahl-Jensen, D.: Evidence of isotopic fractionation during vapor exchange between the atmosphere and the snow surface in Greenland, J. Geophys. Res.-Atmos., 124, 2932–2945, https://doi.org/10.1029/2018jd029619, 2019.
Maslanik, J. and Stroeve, J.: Near-Real-Time DMSP SSM/I-SSMIS Daily Polar
Gridded Brightness Temperatures, Version 1, NASA NSIDC Distributed Active
Archive Center, https://doi.org/10.5067/AKQDND71ZDLF, 1999.
Mastenbrook, H. J.: Water vapor distribution in the stratosphere and high
troposphere, J. Atmos. Sci., 25, 299–311,
https://doi.org/10.1175/1520-0469(1968)025<0299:wvdits>2.0.co;2, 1968.
Mattingly, K. S., Mote, T. L., and Fettweis, X.: Atmospheric river impacts on Greenland Ice Sheet surface mass balance, J. Geophys. Res.-Atmos., 123,
8538–8560, https://doi.org/10.1029/2018jd028714, 2018.
McLeod, J. T. and Mote, T. L.: Linking interannual variability in extreme
Greenland blocking episodes to the recent increase in summer melting across
the Greenland ice sheet, Int. J. Climatol., 36, 1484–1499, 2016.
Meier, W. N., Stroeve, J., and Gearheard, S.: Bridging perspectives from
remote sensing and Inuit communities on changing sea-ice cover in the Baffin
Bay region, Ann. Glaciol., 44, 433–438, 2006.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the
deuterium–oxygen 18 relationship for precipitation, J. Geophys. Res., 84, 5029–5033, https://doi.org/10.1029/JC084iC08p05029, 1979.
Mock, S.: Fluctuations of the terminus of the Harald Moltke Bræ, Greenland, J. Glaciol, 6, 369–373, https://doi.org/10.3189/S002214300001947X, 1966.
Molina, M. J. and Allen, J. T.: On the moisture origins of tornadic
thunderstorms, J. Climate, 32, 4321–4346, 2019.
Moore, G. W. K.: The March 1972 northwest Greenland windstorm: evidence of
downslope winds associated with a trapped lee wave, Q. J. Roy. Meteorol. Soc., 142, 1428–1438, https://doi.org/10.1002/qj.2744, 2016.
Moorman, B. J., Michel, F. A., and Drimmie, R. J.: Isotopic variability in
Arctic precipitation as a climatic indicator, Geosci. Can., 23, 1996.
MOSAiC: Multidisciplinary drifting Observatory for the Study of Arctic
Climate (MOSAiC) Project, available at: https://mosaic-expedition.org/,
last access: 1 May 2020.
Mote, T. L.: MEaSUREs Greenland Surface Melt Daily 25 km EASE-Grid 2.0, version 1. NASA National Snow and Ice Data Center, Boulder, CO, USA, https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0533.001, 2014.
Muscari, G.: Ground meteorological data (T, P, RH) obtained during the YOPP SOP in early 2018 at Thule Air Base, Greenland, Istituto Nazionale di
Geofisica e Vulcanologia, Roma, Italy, PANGAEA, and related Muscari datasets
also on PANGAEA, https://doi.org/10.1594/PANGAEA.895059, 2018.
Mysak, L. A., Ingram, R. G., Wang, J., and van der Baaren, A.: The anomalous
sea-ice extent in Hudson bay, Baffin bay and the Labrador sea during three
simultaneous NAO and ENSO episodes, Atmos. Ocean, 34, 313–343, 1996.
Neff, W., Compo, G. P., Martin, R. F., and Shupe, M. D.: Continental heat
anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889, J. Geophys. Res.-Atmos., 119, 6520–6536, https://doi.org/10.1002/2014jd021470, 2014.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan,
K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt
across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012gl053611, 2012.
NOAA: Climate Prediction Center: Teleconnections – Archive of Daily Indices,
NOAA National Weather Service, available at:
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnections.shtml
(last access: 1 August 2020), 2019.
NOAA: Arctic Report Card, NOAA Arctic Program, available at: https://arctic.noaa.gov/, last access: 1 May 2020.
Noël, B., van de Berg, W. J., Lhermitte, S., and van den Broeke, M. R.:
Rapid ablation zone expansion amplifies north Greenland mass loss, Sci. Adv.,
5, eaaw0123, https://doi.org/10.1126/sciadv.aaw0123, 2019.
Nusbaumer, J., Alexander, P. M., LeGrande, A. N., and Tedesco, M.: Spatial
shift of Greenland moisture sources related to enhanced Arctic warming, Geophys. Res. Lett., 46, 14723–14731, https://doi.org/10.1029/2019gl084633, 2019.
Olden, J. D. and Neff, B. D.: Cross-correlation bias in lag analysis of aquatic time series, Mar. Biol., 138, 1063–1070, 2001.
Oltmanns, M., Straneo, F., and Tedesco, M.: Increased Greenland melt triggered by large-scale, year-round cyclonic moisture intrusions, The
Cryosphere, 13, 815–825, https://doi.org/10.5194/tc-13-815-2019, 2019.
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C.: Seasonal
and regional manifestation of Arctic sea ice loss, J. Climate, 31, 4917–4932, 2018.
Osterberg, E. C., Hawley, R. L., Wong, G., Kopec, B., Ferris, D., and Howley, J.: Coastal ice-core record of recent northwest Greenland temperature and sea-ice concentration, J. Glaciol., 61, 1137–1146, 2015.
Peterson, T. C., Karl, T. R., Jamason, P. F., Knight, R., and Easterling, D.
R.: First difference method: Maximizing station density for the calculation of long-term global temperature change, J. Geophys. Res.-Atmos., 103,
25967–25974, https://doi.org/10.1029/98jd01168, 1998.
Petrie, R. E., Shaffrey, L. C., and Sutton, R. T.: Atmospheric response in
summer linked to recent Arctic sea ice loss, Q. J. Roy. Meteorol. Soc., 141,
2070–2076, 2015.
Pfahl, S., and Sodemann, H.: What controls deuterium excess in global
precipitation?, Clim. Past, 10, 771–781, https://doi.org/10.5194/cp-10-771-2014, 2014.
Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T. W., Ekman, A. M. L., Neggers, R., Shupe, M. D., Solomon, A., Tjernström, M., and
Wendisch, M.: Role of air-mass transformations in exchange between the Arctic and mid-latitudes, Nat. Geosci., 11, 805–812, 2018.
Porter, C., Morin, P., Howat, I., Noh, M. J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington,
M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P.,
Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, V1, https://doi.org/10.7910/DVN/OHHUKH, 2018.
Puntsag, T., Mitchell, M. J., Campbell, J. L., Klein, E. S., Likens, G. E.,
and Welker, J. M.: Arctic Vortex changes alter the sources and isotopic
values of precipitation in northeastern US, Sci. Rep., 6, 22647, https://doi.org/10.1038/srep22647, 2016.
Putman, A. L., Feng, X. H., Sonder, L. J., and Posmentier, E. S.: Annual
variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region, Atmos. Chem. Phys., 17, 4627–4639,
https://doi.org/10.5194/acp-17-4627-2017, 2017.
Reeh, N., Thomsen, H. H., Frich, P., and Clausen, H. B.: Stable isotope studies on ice margins in the Thule area, in: Late Quaternary stratigraphy
and glaciology in the Thule area, Northwest Greenland, Geosicence, edited by: Funder, S., Meddelelser Om Grønland, Copenhagen, Denmark, 47–56, 1990.
Ritter, F., Steen-Larsen, H. C., Werner, M., Masson-Delmotte, V., Orsi, A., Behrens, M., Birnbaum, G., Freitag, J., Risi, C., and Kipfstuhl, S.: Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica, The Cryosphere, 10, 1647–1663, https://doi.org/10.5194/tc-10-1647-2016, 2016.
Rogers, M. C., Sullivan, P. F., and Welker, J. M.: Evidence of nonlinearity
in the response of net ecosystem CO2 exchange to increasing levels of winter snow depth in the High Arctic of Northwest Greenland, Arct. Antarct. Alp. Res., 43, 95–106, 2011.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic
patterns in modern global precipitation, Climate Change in Continental
Isotopic Records, American Geophysical Union, Washington, D.C., 1–36, 1993.
Runge, J., Petoukhov, V., and Kurths, J.: Quantifying the strength and delay
of climatic interactions: The ambiguities of cross correlation and a novel
measure based on graphical models, J. Climate, 27, 720–739,
https://doi.org/10.1175/jcli-d-13-00159.1, 2014.
Schaeffer, S. M., Sharp, E., Schimel, J. P., and Welker, J. M.: Soil–plant
N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall, Global Change Biol., 19, 3529–3539, https://doi.org/10.1111/gcb.12318, 2013.
Schytt, V.: Glaciological investigations in the Thule Ramp area, Report of
the Cold Regions Research and Engineering Laboratory 28, Cold Regions Research and Engineering Laboratory, Hanover, NH, 88 pp., 1955.
Sherwood, S. C., Roca, R., Weckwerth, T. M., and Andronova, N. G.:
Tropospheric water vapor, convection, and climate, Rev. Geophys., 48, RG2001, https://doi.org/10.1029/2009RG000301, 2010.
Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and
North Atlantic Oscillation influence, J. Geophys. Res.-Atmos., 113,
D03107, https://doi.org/10.1029/2007jd008503, 2008.
Stansfield, J. R.: The severe Arctic Storm of 8–9 March 1972 at Thule Air
Force Base, Greenland, Weatherwise, 25, 228–232, 1972.
Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi,
C., Sodemann, H., Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehoj, M. D., Falourd, S., Grindsted, A., Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P., Sperlich, P., Sveinbjornsdottir, A. E., Vinther, B. M., and White, J. W. C.: Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet, Atmos. Chem. Phys., 13, 4815–4828,
https://doi.org/10.5194/acp-13-4815-2013, 2013.
Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prie, F., Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen, D.,
Dumont, M., Guillevic, M., Kipfstuhl, S., Landais, A., Popp, T., Risi, C.,
Steffen, K., Stenni, B., and Sveinbjornsdottir, A. E.: What controls the
isotopic composition of Greenland surface snow?, Clim. Past, 10, 377–392,
https://doi.org/10.5194/cp-10-377-2014, 2014.
Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen,
D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S. J., Jouzel, J.,
Masson-Delmotte, V., Popp, T., Rasmussen, S. O., Röthlisberger, R., Ruth, U., Stauffer, B., Siggaard-Andersen, M. L., Sveinbjörnsdóttir, Á. E., Svensson, A., and White, J. W. C.: High-resolution Greenland ice core data show abrupt climate change happens in few years, Science, 321, 680–684, https://doi.org/10.1126/science.1157707, 2008.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077, 2015.
Stern, H. L. and Heide-Jørgensen, M. P.: Trends and variability of sea ice in Baffin Bay and Davis Strait, 1953–2001, Polar Res., 22, 11–18,
https://doi.org/10.1111/j.1751-8369.2003.tb00090.x, 2003.
Stroeve, J. and Meier, W. N.: Sea ice trends and climatologies from SMMR and SSM/I-SSMIS, Version 3, NASA NSIDC Distributed Active Archive Center,
https://doi.org/10.5067/IJ0T7HFHB9Y6, 2018.
Sturm, P. and Knohl, A.: Water vapor δ2H and δ18O measurements using off-axis integrated cavity output spectroscopy, Atmos. Meas. Tech., 3, 67–77, https://doi.org/10.5194/amt-3-67-2010, 2010.
Sullivan, P. F., Welker, J. M., Steltzer, H., Sletten, R. S., Hagedorn, B.,
Arens, S. J. T., and Horwath, J. L.: Energy and water additions give rise to
simple responses in plant canopy and soil microclimates of a high arctic
ecosystem, J. Geophys. Res.-Biogeo., 113, G03S08, https://doi.org/10.1029/2007JG000477, 2008.
Tang, C. C. L., Ross, C. K., Yao, T., Petrie, B., DeTracey, B. M., and Dunlap, E.: The circulation, water masses and sea-ice of Baffin Bay, Prog.
Oceanogr., 63, 183–228, 2004.
Tedesco, M. and Fettweis, X.: Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet, The Cryosphere, 14, 1209–1223, https://doi.org/10.5194/tc-14-1209-2020, 2020.
Theakstone, W. H.: A seven-year study of oxygen isotopes in daily precipitation at a site close to the Arctic Circle, Tustervatn, Norway:
Trajectory analysis and links with the North Atlantic Oscillation, Atmos.
Environ., 45, 5101–5109, 2011.
Tremoy, G., Vimeux, F., Cattani, O., Mayaki, S., Souley, I., and Favreau, G.,
Measurements of water vapor isotope ratios with wavelength-scanned cavity
ring-down spectroscopy technology: new insights and important caveats for
deuterium excess measurements in tropical areas in comparison with
isotope-ratio mass spectrometry, Rapid Commun. Mass Spectrom., 25, 3469–3480, https://doi.org/10.1002/rcm.5252, 2011.
USAF: THU weather observations, Thule Air Base, Greenland, 821 SPTS/OSW,
USAF, Colorado Springs, CO, USA, 2019.
van As, D.: Warming, glacier melt and surface energy budget from weather
station observations in the Melville Bay region of northwest Greenland, J.
Glaciol., 57, 208–220, 2011.
van As, D., Hubbard, A. L., Hasholt, B., Mikkelsen, A. B., van den Broeke,
M. R., and Fausto, R. S.: Large surface meltwater discharge from the
Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations, The Cryosphere, 6, 199–209, https://doi.org/10.5194/tc-6-199-2012, 2012.
van As, D., Fausto, R. S., Steffen, K., and Team, P. P.: Katabatic winds and
piteraq storms: observations from the Greenland ice sheet, GEUS Bulletin, 31, 83–86, https://doi.org/10.34194/geusb.v33.4669, 2014.
Vihma, T., Screen, J., Tjernstrom, M., Newton, B., Zhang, X., Popova, V.,
Deser, C., Holland, M., and Prowse, T.: The atmospheric role in the Arctic
water cycle: A review on processes, past and future changes, and their impacts, J. Geophys. Res.-Biogeo., 121, 586–620, https://doi.org/10.1002/2015jg003132, 2016.
Vimeux, F., Masson, V., Jouzel, J., and Petit, J. R.: Glacial–interglacial
changes in ocean surface conditions in the Southern Hemisphere, Nature, 398, 410–413, https://doi.org/10.1038/18860, 1999.
Vincent, R. F.: A Study of the North Water Polynya Ice Arch using four decades of satellite data, Scient. Rep., 9, 20278, https://doi.org/10.1038/s41598-019-56780-6, 2019.
Vinther, B. M., Johnsen, S. J., Andersen, K. K., Clausen, H. B., and Hansen,
A. W.: NAO signal recorded in the stable isotopes of Greenland ice cores,
Geophys. Res. Lett., 30, 1387, https://doi.org/10.1029/2002gl016193, 2003.
Vinther, B. M., Jones, P. D., Briffa, K. R., Clausen, H. B., Andersen, K. K., Dahl-Jensen, D., and Johnsen, S. J.: Climatic signals in multiple highly
resolved stable isotope records from Greenland, Quaternary Sci. Rev., 29,
522–538, 2010.
Warner, M. S. C.: Introduction to PySPLIT: A Python Toolkit for NOAA ARL's
HYSPLIT Model, Comput. Sci. Eng., 20, 47–62, https://doi.org/10.1109/MCSE.2017.3301549, 2018.
Wei, Z., Lee, X., Aemisegger, F., Benetti, M., Berkelhammer, M., Bonne, J.-L., Casado, M., Caylor, K., Christner, E., Dyroff, C., García, O. E., González, Y., Griffis, T., Kurita, N., Liang, J., Liang, M.-C., Lin, G., Noone, D., Gribanov, K., Munksgaard, N.-C., Schneider, M., Ritter, F.,
Steen-Larsen, H. C., Vallet-Coulomb, C., Wen, X., Wright, J. S., Xiao, W.,
Yoshimura, K.: A global database of water vapour isotopes measured with high
temporal resolution infrared laser spectroscopy, Scient. Data, 6, 180302,
https://doi.org/10.1038/sdata.2018.302, 2019.
Welker, J. M.: Isotopic (δ18O) characteristics of weekly
precipitation collected across the USA: an initial analysis with application
to water source studies, Hydrol. Process., 14, 1449–1464, 2000.
Welker, J. M., Rayback, S., and Henry, G. H. R.: Arctic and North Atlantic
Oscillation phase changes are recorded in the isotopes (δ18O and δ13C) of Cassiope tetragona plants, Global Change Biol., 11, 997–1002, https://doi.org/10.1111/j.1365-2486.2005.00961.x, 2005.
Welker, J. M., Klein, E. S., Noone, D., Bailey, H., Akers, P. D., Kopec, B. G., Marttila, H., Mustonen, K. R., Kløve, B., and Steen-Larsen, H. C.:
MOSAiC's Pan Arctic water isotope network & discoveries, American Geophysical Union Fall Meeting, San Francisco, CA, USA, 2019.
Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C., and Codron, F.: West Antarctic surface melt triggered by atmospheric rivers, Nat. Geosci., 12, 911–916, 2019.
Woods, C., Caballero, R., and Svensson, G.: Large-scale circulation associated with moisture intrusions into the Arctic during winter, Geophys.
Res. Lett., 40, 4717–4721, https://doi.org/10.1002/grl.50912, 2013.
Zheng, M., Sjolte, J., Adolphi, F., Vinther, B. M., Steen-Larsen, H. C., Popp, T. J., and Muscheler, R.: Climate information preserved in seasonal water isotope at NEEM: relationships with temperature, circulation and sea ice, Clim. Past, 14, 1067–1078, https://doi.org/10.5194/cp-14-1067-2018, 2018.
Short summary
Water vapor isotopes recorded for 2 years in coastal northern Greenland largely reflect changes in sea ice cover, with distinct values when Baffin Bay is ice covered in winter vs. open in summer. Resulting changes in moisture transport, surface winds, and air temperature also modify the isotopes. Local glacial ice may thus preserve past changes in the Baffin Bay sea ice extent, and this will help us better understand how the Arctic environment and water cycle responds to global climate change.
Water vapor isotopes recorded for 2 years in coastal northern Greenland largely reflect changes...
Altmetrics
Final-revised paper
Preprint