



# Supplement of

## Baffin Bay sea ice extent and synoptic moisture transport drive water vapor isotope ( $\delta^{18}$ O, $\delta^{2}$ H, and deuterium excess) variability in coastal northwest Greenland

Pete D. Akers et al.

Correspondence to: Pete D. Akers (pete.d.akers@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

#### S1 Quality checking and instrument stability issues

The raw data from the L2130-i was passed through a series of quality checks prior to humidity response correction to remove readings that were well outside typical values observed at Thule. Most of these erroneous readings appear due to liquid water contamination of the intake tubing, likely from precipitation during intense cyclones. These quality checks identified and

- 5 removed data where:
  - L2130-i diagnostic data (e.g., chamber temperature, pressure, status, etc.) were unstable or out of typical ranges
  - Water vapor mixing ratio >15000 ppmv
  - $\delta^{18}$ O values >-15‰ AND *dxs* values <-20‰
  - Standard deviation for five minute aggregates of  $\delta^{18}O > 8\%$
- 10 An additional quality check was performed after humidity response calibration. Visual inspection was used to identify clearly abnormal isotopic or mixing ratio values (e.g., very large and/or abrupt changes not supported by meteorological data), and these observations were removed.

The machine was initially used at a tundra-based field site in Thule for a summer project in 2015, and it was installed its present location in October 2016. However, there were issues with cavity pressure stability and irregular isotopic readings

15 which culminated in a full systems crash in May 2017. The system was restored on 04 Aug 2017 with stable cavity pressure that has continued through present. Data from before the system restoration has poor correlation in water vapor mixing ratio between the L2130-i and the SMT weather station. Winter isotopic values and mixing ratios are also much higher in the prerestoration data than the next two winters despite generally similar winter weather. Out of caution, we have restricted our analyses and discussion to only post-restoration data.

#### 20 S2 Humidity response calibrations

To correct for  $\delta^{18}$ O and  $\delta^{2}$ H accuracy and precision bias at low water vapor mixing ratios, we injected standard waters for ten minutes at ten different flow rates. The last 200 observations of each injection were saved, and a nonlinear regression was performed on the  $\delta X$  vs. mixing ratio relationship, where  $\delta X$  is either  $\delta^{18}$ O or  $\delta^{2}$ H, to determine accuracy corrections. The nonlinear regression was of the form:

$$25 \quad \delta X_{correction} = a + \frac{b}{q} \tag{S1}$$

where  $\delta X_{\text{correction}}$  is the difference between the observed isotopic value and the actual standard isotopic value, *q* is the water vapor mixing ratio, and *a* and *b* are constants. Calculated values for regression parameters are given in Table S4. Confidence

intervals for predicted humidity response corrections were estimated using the predictNLS function from the *propagate* package in R.

30 Changes in analytical precision at low water vapor mixing ratios were calculated with a nonlinear regression of the form:

$$\delta X_{precision} = a + \frac{b}{q} \tag{S2}$$

where  $\delta X_{\text{precision}}$  is the standard error of the mean isotopic value for a given flow rate, *q* is the water vapor mixing ratio, and *a* and *b* are constants. Calculated values for regression parameters are given in Table S5.

#### S3 Isotope-isotope relationships

- 35 Over the full dataset,  $\delta^{18}$ O and  $\delta^{2}$ H have a strong linear relationship with low parameter standard error:  $\delta^{2}$ H = 6.959 ± 0.003 \*  $\delta^{18}$ O 18.07 ± 0.09‰ (r<sup>2</sup> = 0.98, n=111138, 10 min data). Overall, this value is comparable to other slopes observed at other high latitude sites, such as 6.8 at Ivittuut, Greenland, (Bonne et al., 2014), 6.5 at NEEM, Greenland, (Steen-Larsen et al., 2013), 6.0–6.5 at Dome C, Antarctica (Casado et al., 2016), and 6.95 from the vapor mixing line at Kangerlussuaq, Greenland (Kopec et al., 2014). Changes in  $\delta^{18}$ O are thus closely mirrored in  $\delta^{2}$ H, and most differences are only detectable on very short timescales
- 40 (i.e., less than hourly) when some minor lead-lag between relative maxima and minima may occur. The *dxs* at Thule is negatively correlated with both  $\delta^{18}$ O and  $\delta^{2}$ H ( $\rho_{10min} = -0.78$  and -0.70, respectively).



Figure S1. Results of the humidity response calibrations for δ<sup>18</sup>O (a, c) and δ<sup>2</sup>H (b, d) for two standard waters (USGS 45: top row and USGS 46: bottom row). Points show individual 1 s<sup>=1</sup> observations, while solid lines show the nonlinear regression of the data (blue: δ<sup>18</sup>O, pink: δ<sup>2</sup>H). Dashed horizontal lines show the actual isotopic value of the standard waters.



Fig S2: Comparison between time series of (a)  $\delta^{18}$ O and (b) *dxs* with NAO index, after all data have been differenced by one day.



55 Figure S3. Water vapor δ<sup>18</sup>O (top row; a–c) and dxs (bottom row; d–f) compared to meteorological variables for the period April through September. Data are split by whether the wind regime was katabatic (azimuth > 40° & < 180°) or sea breeze (azimuth > 240° & < 360°). A generalized additive smoothing model with 95% confidence intervals is overlaid to show trends of the mean values for each wind regime.</p>



Figure S4: Satellite imagery (top row; a, b) and sea ice concentration (bottom row; c, d) illustrating sea ice conditions before (left column; a, c) and after (right column; b, d) the late spring shift in isotopic and meteorological values at Thule in 2019. The images illustrate the opening of local oceans and snowpack melt as a result of local sea ice breakup. Satellite imagery provided by MODIS (Hall and Riggs, 2015) and sea ice concentration by the NSIDC (Fetterer et al., 2017).



Figure S5. Relationship between air temperature and water vapor mixing ratio (here, log-transformed), illustrating the decoupling that occurs above 5°C (vertical line). Data are split by whether the wind regime was katabatic (azimuth > 40° & < 180°) or sea breeze (azimuth > 240° & < 360°). A generalized additive smoothing model with 95% confidence intervals is overlaid to show trends of the mean values for each wind regime. The relationship decoupling exists in the data from both wind regimes.



Figure S6. Comparison of isotopic and meteorological data during the period 18–26 Sep for 2017 (left) and 2018 (right). A diel cycle is observed in air temperature, relative humidity, and wind speed in both years, but in the isotopes and mixing ratio only for the year 2017. Y-axes are scaled the same for both years with the exception of δ<sup>18</sup>O. Dashed gray vertical lines indicate the time of daily thermal max from 20–25 Sep. The 2018 example, when no little to no isotopic cycling is observed, is representative of nearly all other autumn periods at Thule when diel cycles in temperature and relative humidity can be clearly observed in the general time series data.

Table S1. High latitude stationary sites with continuous observations of water vapor isotopes longer than two weeks reported in scientific literature.

| Site                  | Coordinates       | Elevation     | Setting   | Period of record       | Citation                    |
|-----------------------|-------------------|---------------|-----------|------------------------|-----------------------------|
| Thule, NW Greenland   | 76.51°N, 68.74°W  | 229 m a.s.l.  | Coastal   | 08/2017 to 08/2019     | This study                  |
| Ivittuut, S Greenland | 61.21°N, 48.17°W  | 30 m a.s.l.   | Coastal   | 09/2011 to 05/2013     | (Bonne et al., 2014)        |
| Kangerlussuaq, W      | 67.02°N, 50.69°W  | 49 m a.s.l    | Coastal   | 07/2011 to 08/2011     | (Kopec et al., 2014)        |
| Greenland             |                   | <b>A</b> 40.4 | - 1       |                        |                             |
| NEEM, NW Greenland    | 77.45°N, 51.05°W  | 2484 m a.s.l. | Ice sheet | 05/2010 to $07/2010$ ; | (Steen-Larsen et al., 2013; |
|                       |                   |               |           | 07/2011 to 08/2011;    | Steen-Larsen et al., 2014)  |
|                       |                   |               |           | 05/2012 to 08/2012     |                             |
| Summit, Greenland     | 72.58°N, 38.46°W  | 3216 m a.s.l. | Ice sheet | Summer 2011 to         | (Bailey et al., 2015)       |
| ·                     |                   |               |           | summer 2014            |                             |
| Selvogsviti, Iceland  | 63.83°N, 21.47°W  | 0 m a.s.l.    | Coastal   | 11/2011 to 04/2013     | (Steen-Larsen et al., 2015) |
| Kourovka, W Siberia   | 57.04°N, 59.55°E  | 300 m a.s.l.  | Inland    | 09/2012 to 08/2013     | (Bastrikov et al., 2014)    |
| Samoylov Island, E    | 72.37°N, 126.48°E | 0 m a.s.l.    | Coastal   | 07/2015 to 06/2017     | (Bonne et al., 2020)        |
| Siberia               |                   |               |           |                        |                             |
| Toolik Lake, N Alaska | 68.63°N, 149.60°W | 760 m a.s.l.  | Inland    | 05/2013 to 08/2013     | (Klein et al., 2015)        |
| Dumont d'Urville, E   | 66.65°S, 140.00°E | 10 m a.s.l.   | Coastal   | 12/2016 to 02/2017     | (Bréant et al., 2019)       |
| Antarctica            |                   |               |           |                        |                             |
| Syowa, E Antarctica   | 69.00°S, 39.58°E  | 0 m a.s.l.    | Coastal   | 12/2013 to 02/2014;    | (Kurita et al., 2016)       |
|                       |                   |               |           | 12/2014 to 02/2015     |                             |
| Kohnen, E Antarctica  | 75.00°S, 0.07°E   | 2892 m a.s.l  | Ice sheet | 12/2013 to 01/2014     | (Ritter et al., 2016)       |
| Dome C, E Antarctica  | 75.10°S, 123.39°E | 3233 m a.s.l  | Ice sheet | 12/2014 to 01/2015     | (Casado et al., 2016)       |

80

85

Table S2. Standard waters calibration results after dry air system installation, performed roughly every 25 hours. Mean values and standard deviations of the last 200 observations for each calibration are given here. Some days do not have data due to failed calibration from a clogged injection needle or stuck injection piston. Some of the calibrations included here extend beyond the limit of ambient data discussed in the study, but station operation has continued without interruption.

|            |                   | USGS 45     |                   |     |       |    | USGS 46        |             |                   |     |       |      |
|------------|-------------------|-------------|-------------------|-----|-------|----|----------------|-------------|-------------------|-----|-------|------|
|            | Mixing r<br>(ppmv | ratio<br>7) | δ <sup>18</sup> Ο | (‰) | δ²Η ( | ‰) | Mixing<br>(ppm | ratio<br>v) | δ <sup>18</sup> Ο | (‰) | δ²Η ( | (%0) |
| Date       | Mean              | SD          | Mean              | SD  | Mean  | SD | Mean           | SD          | Mean              | SD  | Mean  | SD   |
| 2019-08-01 | 5367              | 20          | -0.8              | 0.6 | -11   | 4  | 5325           | 14          | -28.8             | 0.6 | -241  | 4    |
| 2019-08-02 | 5378              | 16          | -0.9              | 0.6 | -9    | 4  | 5345           | 10          | -28.9             | 0.6 | -239  | 4    |
| 2019-08-04 | 5412              | 19          | -0.7              | 0.7 | -10   | 4  | 5396           | 14          | -28.7             | 0.6 | -240  | 4    |
| 2019-08-05 | 5421              | 18          | -0.8              | 0.6 | -10   | 4  | 5406           | 14          | -28.8             | 0.6 | -241  | 4    |
| 2019-08-06 | 5450              | 15          | -0.7              | 0.6 | -10   | 4  | 5446           | 17          | -28.7             | 0.6 | -240  | 4    |
| 2019-08-07 | 5459              | 15          | -0.6              | 0.6 | -10   | 4  | 5430           | 18          | -28.6             | 0.6 | -240  | 4    |
| 2019-08-09 | 5480              | 16          | -0.7              | 0.6 | -10   | 4  | 5431           | 17          | -28.8             | 0.6 | -240  | 4    |
| 2019-08-10 | 5438              | 12          | -0.9              | 0.6 | -10   | 4  | 5448           | 19          | -28.7             | 0.6 | -239  | 4    |
| 2019-08-11 | 5467              | 15          | -0.8              | 0.6 | -10   | 4  | 5476           | 59          | -28.5             | 0.6 | -239  | 4    |
| 2019-08-12 | 5392              | 57          | -0.8              | 0.7 | -10   | 4  | 5531           | 91          | -28.5             | 0.7 | -240  | 4    |

| 2019-08-14 | 5520 | 20 | -0.7 | 0.6 | -9  | 4 | 5524 | 18  | -28.6 | 0.7 | -239 | 4 |
|------------|------|----|------|-----|-----|---|------|-----|-------|-----|------|---|
| 2019-08-15 | 5523 | 13 | -0.8 | 0.6 | -10 | 4 | 5528 | 21  | -28.8 | 0.6 | -240 | 4 |
| 2019-08-16 | 5574 | 19 | -0.6 | 0.6 | -10 | 4 | 5568 | 20  | -28.5 | 0.6 | -240 | 4 |
| 2019-08-17 | 5599 | 31 | -0.6 | 0.6 | -9  | 4 | 5535 | 38  | -28.4 | 0.6 | -239 | 4 |
| 2019-08-18 | 5492 | 38 | -0.5 | 0.7 | -9  | 4 | 5545 | 24  | -28.8 | 0.7 | -240 | 4 |
| 2019-08-19 | 5478 | 61 | -0.9 | 0.6 | -10 | 4 | 5573 | 20  | -28.6 | 0.6 | -239 | 4 |
| 2019-08-20 | 5610 | 18 | -0.5 | 0.6 | -9  | 4 | 5544 | 79  | -28.8 | 0.6 | -240 | 4 |
| 2019-08-22 | 5488 | 43 | -1.1 | 0.6 | -11 | 4 | 5564 | 15  | -28.6 | 0.6 | -240 | 4 |
| 2019-08-23 | 5605 | 13 | -0.6 | 0.6 | -9  | 4 | 5622 | 18  | -28.6 | 0.6 | -240 | 4 |
| 2019-08-24 | 5566 | 17 | -0.9 | 0.6 | -10 | 4 | 5591 | 17  | -28.6 | 0.6 | -240 | 4 |
| 2019-08-25 | 5642 | 9  | -0.5 | 0.5 | -10 | 4 | 5602 | 38  | -28.3 | 0.7 | -239 | 4 |
| 2019-08-26 | 5519 | 32 | -1.0 | 0.6 | -11 | 4 | 5641 | 19  | -28.6 | 0.6 | -240 | 4 |
| 2019-08-27 | 5674 | 18 | -0.5 | 0.6 | -9  | 4 | 5620 | 24  | -28.6 | 0.6 | -240 | 4 |
| 2019-08-28 | 5616 | 14 | -0.5 | 0.6 | -10 | 4 | 5602 | 64  | -28.8 | 0.6 | -241 | 4 |
| 2019-08-29 | 5642 | 13 | -0.5 | 0.6 | -9  | 4 | 5449 | 104 | -29.1 | 0.7 | -241 | 4 |
| 2019-08-31 | 5632 | 11 | 0.0  | 0.7 | -9  | 4 | 5655 | 18  | -28.7 | 0.7 | -241 | 4 |
| 2019-09-01 | 5719 | 14 | -0.6 | 0.7 | -10 | 4 | 5668 | 17  | -28.8 | 0.6 | -240 | 4 |
| 2019-09-02 | 5727 | 29 | -0.7 | 0.6 | -10 | 4 | 5739 | 15  | -28.6 | 0.6 | -240 | 4 |
| 2019-09-03 | 5628 | 25 | -0.5 | 0.7 | -9  | 4 | 5671 | 20  | -28.5 | 0.6 | -241 | 4 |
| 2019-09-05 | 5687 | 27 | -0.7 | 0.6 | -10 | 4 | 5744 | 18  | -28.5 | 0.6 | -240 | 4 |
| 2019-09-06 | 5787 | 17 | -0.5 | 0.6 | -10 | 4 | 5734 | 21  | -28.6 | 0.6 | -241 | 4 |
| 2019-09-08 | 5769 | 15 | -0.2 | 0.7 | -9  | 4 | 5798 | 21  | -28.6 | 0.6 | -240 | 4 |
| 2019-09-09 | 5739 | 23 | -0.3 | 0.7 | -9  | 4 | 5762 | 20  | -28.4 | 0.6 | -241 | 4 |
| 2019-09-10 | 5729 | 13 | -0.5 | 0.6 | -9  | 4 | 5714 | 43  | -28.6 | 0.6 | -240 | 4 |
| 2019-09-11 | 5810 | 9  | -0.5 | 0.6 | -9  | 4 | 5749 | 19  | -28.5 | 0.6 | -240 | 4 |
| 2019-09-12 | 5737 | 20 | -0.4 | 0.7 | -9  | 4 | 5787 | 57  | -28.4 | 0.6 | -240 | 4 |
| 2019-09-13 | 5793 | 29 | -0.9 | 0.6 | -10 | 4 | 5788 | 28  | -28.1 | 0.6 | -239 | 4 |
| 2019-09-14 | 5871 | 17 | -0.1 | 0.7 | -8  | 4 | 5837 | 27  | -28.4 | 0.6 | -240 | 4 |
| 2019-09-16 | 5689 | 12 | -0.6 | 0.6 | -10 | 4 | 5852 | 24  | -28.5 | 0.6 | -240 | 4 |
| 2019-09-17 | 5723 | 37 | -0.8 | 0.7 | -10 | 4 | 5817 | 21  | -28.3 | 0.7 | -239 | 4 |
| 2019-09-18 | 5855 | 20 | -0.3 | 0.6 | -9  | 3 | 5901 | 35  | -28.4 | 0.6 | -240 | 4 |
| 2019-09-19 | 5864 | 11 | -0.5 | 0.6 | -9  | 4 | 5811 | 30  | -28.7 | 0.7 | -241 | 4 |
| 2019-09-20 | 5948 | 10 | -0.5 | 0.6 | -10 | 4 | 5966 | 14  | -28.7 | 0.6 | -241 | 4 |
| 2019-09-22 | 5942 | 12 | -0.5 | 0.6 | -9  | 4 | 5938 | 11  | -28.6 | 0.6 | -241 | 4 |
| 2019-09-24 | 5999 | 35 | -0.4 | 0.6 | -9  | 4 | 6009 | 17  | -28.5 | 0.6 | -240 | 4 |

| 2019-09-25 | 5933 | 7  | -0.4 | 0.6 | -9  | 4 | 5929 | 15 | -28.6 | 0.6 | -240 | 4 |
|------------|------|----|------|-----|-----|---|------|----|-------|-----|------|---|
| 2019-09-26 | 5887 | 15 | -0.6 | 0.7 | -9  | 4 | 5967 | 18 | -28.4 | 0.6 | -239 | 4 |
| 2019-09-27 | 5792 | 17 | -0.9 | 0.6 | -9  | 4 | 5855 | 21 | -29.2 | 0.7 | -242 | 4 |
| 2019-09-28 | 5887 | 13 | -0.4 | 0.6 | -9  | 4 | 5880 | 13 | -28.5 | 0.6 | -240 | 4 |
| 2019-09-29 | 5832 | 21 | -0.3 | 0.5 | -10 | 4 | 5866 | 16 | -28.7 | 0.6 | -241 | 4 |
| 2019-09-30 | 5815 | 32 | 0.1  | 0.6 | -8  | 4 | 5837 | 19 | -28.5 | 0.6 | -241 | 4 |

Table S3. Isotopic value trends for standard water calibrations performed after dry air system installation (Table S3). Trends are calculated as the slope of the last 200 observations taken during a calibration versus time, with one observation per second. The mean and standard deviation of all calibration runs is given at the bottom of the table.

|            | USG                                    | 8 45                                  | USGS 46                                |                                       |  |
|------------|----------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|--|
| Date       | δ <sup>18</sup> O (‰ s <sup>-1</sup> ) | δ <sup>2</sup> H (‰ s <sup>-1</sup> ) | δ <sup>18</sup> O (‰ s <sup>-1</sup> ) | δ <sup>2</sup> H (‰ s <sup>-1</sup> ) |  |
| 2019-08-01 | 0.0000                                 | 0.0047                                | 0.0006                                 | -0.0043                               |  |
| 2019-08-02 | 0.0004                                 | 0.0098                                | 0.0001                                 | 0.0056                                |  |
| 2019-08-04 | 0.0019                                 | 0.0036                                | 0.0001                                 | -0.0064                               |  |
| 2019-08-05 | 0.0021                                 | 0.0008                                | 0.0021                                 | 0.0037                                |  |
| 2019-08-06 | 0.0015                                 | -0.0063                               | 0.0011                                 | 0.0089                                |  |
| 2019-08-07 | 0.0008                                 | -0.0014                               | 0.0009                                 | 0.0004                                |  |
| 2019-08-09 | 0.0014                                 | 0.0089                                | -0.0006                                | -0.0015                               |  |
| 2019-08-10 | 0.0014                                 | 0.0016                                | 0.0001                                 | 0.0018                                |  |
| 2019-08-11 | -0.0002                                | 0.0033                                | 0.0004                                 | 0.0061                                |  |
| 2019-08-12 | -0.0032                                | 0.0059                                | -0.0003                                | -0.0030                               |  |
| 2019-08-14 | 0.0013                                 | 0.0055                                | -0.0001                                | -0.0027                               |  |
| 2019-08-15 | -0.0001                                | -0.0106                               | 0.0030                                 | 0.0096                                |  |
| 2019-08-16 | 0.0006                                 | 0.0052                                | 0.0050                                 | 0.0064                                |  |
| 2019-08-17 | 0.0007                                 | 0.0038                                | 0.0015                                 | -0.0016                               |  |
| 2019-08-18 | 0.0028                                 | 0.0040                                | 0.0039                                 | 0.0110                                |  |
| 2019-08-19 | 0.0018                                 | 0.0122                                | 0.0012                                 | 0.0085                                |  |
| 2019-08-20 | 0.0001                                 | 0.0112                                | 0.0008                                 | 0.0045                                |  |
| 2019-08-22 | 0.0011                                 | 0.0115                                | 0.0019                                 | -0.0067                               |  |
| 2019-08-23 | -0.0014                                | 0.0010                                | 0.0014                                 | 0.0042                                |  |
| 2019-08-24 | -0.0005                                | 0.0079                                | 0.0002                                 | -0.0020                               |  |
| 2019-08-25 | -0.0002                                | 0.0122                                | 0.0049                                 | 0.0058                                |  |

| Mean       | -0.0003 | 0.0026  | 0.0014  | 0.0026  |
|------------|---------|---------|---------|---------|
|            |         |         |         |         |
| 2019-09-30 | -0.0017 | 0.0058  | 0.0004  | 0.0048  |
| 2019-09-29 | -0.0016 | 0.0032  | 0.0018  | -0.0081 |
| 2019-09-28 | 0.0000  | 0.0014  | 0.0016  | 0.0032  |
| 2019-09-27 | 0.0013  | 0.0107  | -0.0032 | -0.0111 |
| 2019-09-26 | -0.0023 | -0.0024 | 0.0030  | 0.0114  |
| 2019-09-25 | 0.0012  | 0.0037  | 0.0013  | 0.0059  |
| 2019-09-24 | 0.0000  | 0.0086  | 0.0015  | 0.0040  |
| 2019-09-22 | -0.0025 | -0.0006 | -0.0004 | -0.0009 |
| 2019-09-20 | 0.0037  | 0.0074  | -0.0007 | -0.0059 |
| 2019-09-19 | -0.0018 | -0.0035 | 0.0066  | 0.0243  |
| 2019-09-18 | -0.0014 | 0.0007  | 0.0017  | 0.0033  |
| 2019-09-17 | -0.0036 | 0.0061  | 0.0046  | 0.0107  |
| 2019-09-16 | -0.0013 | -0.0036 | 0.0012  | 0.0079  |
| 2019-09-14 | -0.0018 | 0.0093  | 0.0017  | 0.0103  |
| 2019-09-13 | -0.0021 | -0.0136 | 0.0022  | 0.0015  |
| 2019-09-12 | -0.0013 | 0.0051  | 0.0005  | 0.0064  |
| 2019-09-11 | -0.0017 | -0.0009 | 0.0034  | 0.0017  |
| 2019-09-10 | 0.0002  | -0.0063 | 0.0018  | -0.0027 |
| 2019-09-09 | -0.0014 | -0.0119 | 0.0018  | 0.0101  |
| 2019-09-08 | -0.0014 | 0.0030  | 0.0025  | -0.0038 |
| 2019-09-06 | -0.0002 | -0.0034 | 0.0019  | 0.0014  |
| 2019-09-05 | -0.0011 | 0.0011  | 0.0000  | 0.0021  |
| 2019-09-02 | 0.0009  | -0.0011 | 0.0022  | 0.0043  |
| 2019-09-01 | 0.0009  | 0.0004  | 0.0017  | -0.0043 |
| 2019-08-31 | -0.0020 | 0.0003  | 0.0033  | 0.0003  |
| 2019-08-29 | -0.0003 | -0.0083 | 0.0003  | -0.0018 |
| 2019-08-20 | -0.0003 | 0.0078  | -0.0023 | -0.0082 |
| 2019-08-27 | 0.0013  | 0.0033  | 0.0010  | 0.0000  |
| 2019-08-20 | -0.0025 | 0.0001  | -0.0002 | 0.0041  |
| 2010 09 26 | 0.0022  | 0.0001  | 0.0002  | 0.0041  |

| Standard  | 0.0016 | 0.0062 | 0.0018 | 0.0064 |
|-----------|--------|--------|--------|--------|
| deviation |        |        |        |        |

| Isotopic species | Parameter | Estimate | Standard error | t value | Pr(> t ) |
|------------------|-----------|----------|----------------|---------|----------|
| $\delta^{18}O$   | а         | 1.92     | 0.061          | 31.6    | < 0.001  |
|                  | b         | -3190    | 80             | -42.1   | < 0.001  |
| $\delta^2 H$     | а         | 1.13     | 0.41           | 2.8     | 0.005    |
|                  | b         | -10500   | 510            | -21.0   | < 0.001  |

Table S4. Parameters for nonlinear regression of the humidity response accuracy corrections (Equation S1).

Table S5. Parameters for nonlinear regression of the humidity response precision (Equation S2).

| Isotopic species | Parameter | Estimate | Standard error | t value | Pr(> t ) |
|------------------|-----------|----------|----------------|---------|----------|
| $\delta^{18}O$   | а         | -0.003   | 0.002          | -1.4    | 0.177    |
|                  | b         | 260      | 3              | 102.2   | < 0.001  |
| $\delta^2 H$     | а         | -0.019   | 0.016          | -1.2    | 0.238    |
|                  | b         | 1690     | 20             | 85.7    | < 0.001  |

95 Table S6. Percentage of water vapor uptake attributed to Baffin Bay and the Labrador Sea for moisture arriving at Thule, based on back trajectory analysis and split by meteorological season.

| Domain                             | DJF  | MAM  | JJA  | SON  |
|------------------------------------|------|------|------|------|
| Entire Baffin Bay (Davis to Nares) | 35.6 | 44.4 | 51.2 | 47.2 |
| Labrador Sea                       | 13.7 | 16.3 | 12.2 | 11.7 |
| Entire Baffin Bay + Labrador Sea   | 49.3 | 60.7 | 63.4 | 58.9 |

### References

100

Bailey, A., Noone, D., Berkelhammer, M., Steen-Larsen, H. C., and Sato, P.: The stability and calibration of water vapor isotope ratio measurements during long-term deployments, Atmos. Meas. Tech., 8, 4521-4538, 10.5194/amt-8-4521-2015, 2015.

Bastrikov, V., Steen-Larsen, H. C., Masson-Delmotte, V., Gribanov, K., Cattani, O., Jouzel, J., and Zakharov, V.: Continuous measurements of atmospheric water vapour isotopes in western Siberia (Kourovka), Atmos. Meas. Tech., 7, 1763-1776, 10.5194/amt-7-1763-2014, 2014.

90

Bonne, J. L., Masson-Delmotte, V., Cattani, O., Delmotte, M., Risi, C., Sodemann, H., and Steen-Larsen, H. C.: The isotopic

105 composition of water vapour and precipitation in Ivittuut, southern Greenland, Atmos. Chem. Phys., 14, 4419-4439, 10.5194/acp-14-4419-2014, 2014.

Bonne, J. L., Meyer, H., Behrens, M., Boike, J., Kipfstuhl, S., Rabe, B., Schmidt, T., Schönicke, L., Steen-Larsen, H. C., and Werner, M.: Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia, Atmos. Chem. Phys., 2020, 1-34, 2020.

110 Bréant, C., Dos Santos, C. L., Agosta, C., Casado, M., Fourre, E., Goursaud, S., Masson-Delmotte, V., Favier, V., Cattani, O., Prie, F., Golly, B., Orsi, A., Martinerie, P., and Landais, A.: Coastal water vapor isotopic composition driven by katabatic wind variability in summer at Dumont d'Urville, coastal East Antarctica, Earth and Planetary Science Letters, 514, 37-47, 10.1016/j.epsl.2019.03.004, 2019.

Casado, M., Landais, A., Masson-Delmotte, V., Genthon, C., Kerstel, E., Kassi, S., Arnaud, L., Picard, G., Prie, F., Cattani,
O., Steen-Larsen, H. C., Vignon, E., and Cermak, P.: Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau, Atmos. Chem. Phys., 16, 8521-8538, 10.5194/acp-16-8521-2016, 2016.

Hall, D. K., and Riggs, G. A.: MODIS/Aqua Sea Ice Extent Daily L3 Global 1km EASE-Grid Day, Version 6, NASA NSIDC
Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MYD29P1D.006, 2015.

Klein, E. S., Cherry, J. E., Young, J., Noone, D., Leffler, A. J., and Welker, J. M.: Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice, Scientific Reports, 5, 10.1038/srep10295, 2015.

Kopec, B. G., Lauder, A. M., Posmentier, E. S., and Feng, X.: The diel cycle of water vapor in west Greenland, J. Geophys. Res.-Atmos., 119, 9386-9399, 2014.

125 Kurita, N., Hirasawa, N., Koga, S., Matsushita, J., Steen-Larsen, H. C., Masson-Delmotte, V., and Fujiyoshi, Y.: Influence of large-scale atmospheric circulation on marine air intrusion toward the East Antarctic coast, Geophys. Res. Lett., 43, 9298-9305, 10.1002/2016gl070246, 2016.

Ritter, F., Steen-Larsen, H. C., Werner, M., Masson-Delmotte, V., Orsi, A., Behrens, M., Birnbaum, G., Freitag, J., Risi, C., and Kipfstuhl, S.: Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at

130 Kohnen station, East Antarctica, The Cryosphere, 10, 1647-1663, 2016.

Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H., Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehoj, M. D., Falourd, S., Grindsted, A., Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P., Sperlich, P., Sveinbjornsdottir, A. E., Vinther, B. M., and White, J. W. C.: Continuous monitoring

Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., and Windnagel, A. K.: Sea Ice Index, Version 3. Extent, Concentration, and Concentration Anomalies, NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N5K072F8, 2017.

of summer surface water vapor isotopic composition above the Greenland Ice Sheet, Atmos. Chem. Phys., 13, 4815-4828,

- 135 10.5194/acp-13-4815-2013, 2013.
  - Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prie, F., Bayou, N., Brun, E., Cuffey, K.
    M., Dahl-Jensen, D., Dumont, M., Guillevic, M., Kipfstuhl, S., Landais, A., Popp, T., Risi, C., Steffen, K., Stenni, B., and
    Sveinbjornsdottir, A. E.: What controls the isotopic composition of Greenland surface snow?, Clim. Past, 10, 377-392, 10.5194/cp-10-377-2014, 2014.
- 140 Steen-Larsen, H. C., Sveinbjörnsdottir, A. E., Jonsson, T., Ritter, F., Bonne, J.-L., Masson-Delmotte, V., Sodemann, H., Blunier, T., Dahl-Jensen, D., and Vinther, B. M.: Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition, J. Geophys. Res.-Atmos., 120, 5757-5774, 10.1002/2015jd023234, 2015.