Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 20, issue 3
Atmos. Chem. Phys., 20, 1341–1361, 2020
https://doi.org/10.5194/acp-20-1341-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Chemistry–Climate Modelling Initiative (CCMI) (ACP/AMT/ESSD/GMD...

Atmos. Chem. Phys., 20, 1341–1361, 2020
https://doi.org/10.5194/acp-20-1341-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Feb 2020

Research article | 05 Feb 2020

A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1

Julie M. Nicely et al.

Data sets

Full Results Accompanying A Machine Learning Examination of Hydroxyl Radical Differences Among Model Simulations for CCMI-1 J. M. Nicely, B. N. Duncan, T. F. Hanisco, G. M. Wolfe, R. J. Salawitch, M. Deushi, A. S. Haslerud, P. Jöckel, B. Josse, D. E. Kinnison, A. Klekociuk, M. E. Manyin, V. Marécal, O. Morgenstern, L. T. Murray, G. Myhre, L. D. Oman, G. Pitari, A. Pozzer, I. Quaglia, L. E. Revell, E. Rozanov, A. Stenke, K. Stone, S. Strahan, S. Tilmes, H. Tost, D. M. Westervelt, and G. Zeng https://doi.org/10.13016/vvbp-p6o8

CCMI-1 Data Archive CEDA Archive http://data.ceda.ac.uk/badc/wcrp-ccmi/data/CCMI-1/output

Climate Data at the National Center for Atmospheric Research Climate Data Gateway at NCAR https://www.earthsystemgrid.org/

BADC Data Access IGAC/SPARC http://blogs.reading.ac.uk/ccmi/badc-data-access/

Publications Copernicus
Download
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Differences in methane lifetime among global models are large and poorly understood. We use a...
Citation
Altmetrics
Final-revised paper
Preprint