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Abstract. The hydroxyl radical (OH) plays critical roles
within the troposphere, such as determining the lifetime of
methane (CH4), yet is challenging to model due to its fast
cycling and dependence on a multitude of sources and sinks.
As a result, the reasons for variations in OH and the result-
ing methane lifetime (τCH4 ), both between models and in
time, are difficult to diagnose. We apply a neural network
(NN) approach to address this issue within a group of mod-
els that participated in the Chemistry-Climate Model Initia-
tive (CCMI). Analysis of the historical specified dynamics
simulations performed for CCMI indicates that the primary
drivers of τCH4 differences among 10 models are the flux of
UV light to the troposphere (indicated by the photolysis fre-
quency JO1D), the mixing ratio of tropospheric ozone (O3),
the abundance of nitrogen oxides (NOx ≡ NO+NO2), and
details of the various chemical mechanisms that drive OH.
Water vapour, carbon monoxide (CO), the ratio of NO : NOx ,
and formaldehyde (HCHO) explain moderate differences in
τCH4 , while isoprene, methane, the photolysis frequency of
NO2 by visible light (JNO2), overhead ozone column, and
temperature account for little to no model variation in τCH4 .
We also apply the NNs to analysis of temporal trends in OH
from 1980 to 2015. All models that participated in the speci-
fied dynamics historical simulation for CCMI demonstrate a
decline in τCH4 during the analysed timeframe. The signifi-
cant contributors to this trend, in order of importance, are tro-
pospheric O3, JO1D, NOx , and H2O, with CO also causing
substantial interannual variability in OH burden. Finally, the
identified trends in τCH4 are compared to calculated trends
in the tropospheric mean OH concentration from previous
work, based on analysis of observations. The comparison re-
veals a robust result for the effect of rising water vapour on
OH and τCH4 , imparting an increasing and decreasing trend
of about 0.5 % decade−1, respectively. The responses due to
NOx , ozone column, and temperature are also in reasonably
good agreement between the two studies.

1 Introduction

The hydroxyl radical (OH) is a key species of interest for nu-
merous tropospheric chemistry studies over the past several
decades (e.g. Prinn et al., 1987, 1992; Spivakovsky et al.,
2000; Montzka et al., 2011; Prather et al., 2012; Holmes et
al., 2013; Murray et al., 2013; Naik et al., 2013; Voulgarakis
et al., 2013; McNorton et al., 2016; Rigby et al., 2017; Turner
et al., 2017). As a result of its role as the primary daytime ox-
idant in the lower atmosphere, OH determines how quickly
many tropospheric gases and aerosols degrade or transform
chemically. Notably, loss of atmospheric methane (CH4) is
dominated by its reaction with OH. Uncertainties in the abun-
dance of OH at the global scale, coupled with source terms
of methane that are difficult to quantify, have driven disagree-
ment in the causes of recent variations in the methane growth

rate (Nisbet et al., 2019; Turner et al., 2019). As a key ele-
ment in the methane budget, tropospheric OH must be stud-
ied further to clarify its present-day abundance as well as its
variability over time.

Numerous studies have sought to constrain the OH abun-
dance and resulting methane lifetime (τCH4 ) using observa-
tions, global atmospheric models, and combinations of the
two. Historically, chemical inversion of methyl chloroform
(MCF: CH3CCl3) comprised the primary method capable of
gleaning information about global-scale OH burdens (Love-
lock, 1977; Prinn et al., 1987; Ravishankara and Albritton,
1995; Krol et al., 1998; Montzka et al., 2000; Spivakovsky
et al., 2000; Bousquet et al., 2005), though additional species
that are lost by reaction with OH were also tested for this pur-
pose (Weinstock and Niki, 1969; Singh, 1977; Miller et al.,
1998; Jöckel et al., 2002; Nisbet et al., 2016, 2019; Liang et
al., 2017). Models have likewise been relied upon to derive
tropospheric OH abundance and its evolution. Stevenson et
al. (2006) found a large spread in τCH4 (6.3 to 12.5 years)
from a suite of atmospheric chemistry models in an analysis
performed more than a decade ago. A total of 7 years later,
the Atmospheric Chemistry and Climate Model Intercom-
parison Project (ACCMIP) generated both historical (Naik
et al., 2013) and future (Voulgarakis et al., 2013) simula-
tions from numerous chemistry–climate models, revealing
still large discrepancies not only in present-day τCH4 (with
values ranging from 7.1 to 14.0 years) but also in how τCH4 is
expected to vary through the year 2100 given common emis-
sions scenarios. Note that, here and throughout, τCH4 refers to
the lifetime of methane due to reaction with tropospheric OH
only. Most recently, the confluence of observations with ad-
vanced modelling techniques has enabled sophisticated anal-
yses of global OH (Prather et al., 2012; Holmes et al., 2013;
McNorton et al., 2016; Rigby et al., 2017; Turner et al.,
2017). Despite the advent of numerous observing systems
for species with some bearing on OH chemistry in the last
several decades, it is widely acknowledged that current ob-
servations are insufficient to unambiguously derive current
trends in OH (Prather and Holmes, 2017; Turner et al., 2017,
2019; Nisbet et al., 2019).

While global models are insufficient for clarifying the out-
standing questions regarding OH and τCH4 on their own, they
can serve as valuable testbeds in which to evaluate the fac-
tors influencing OH chemistry. At the global scale, the dom-
inant reactions responsible for producing, cycling, and se-
questering OH (see, e.g. Spivakovsky et al., 2000) are well
characterized and represented, to varying degrees of explicit-
ness, in modern chemical mechanisms. Despite general con-
sensus on the immediate drivers of OH chemistry, large dif-
ferences in OH can manifest due to infrequently diagnosed
differences in, e.g. ultraviolet (UV) flux to the troposphere
(needed to initiate ozone photolysis for subsequent OH pri-
mary production) due to variations in cloud parameteriza-
tions and radiative transfer codes. Similarly, differences in
the representations of volatile organic compound (VOC) ox-
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idation pathways can influence the extent to which OH is re-
cycled following reactions with hydrocarbons. Such nuances
in the chemistry of OH make OH differences between models
notoriously difficult to attribute. With properly coordinated
simulations and sufficient model output, however, we have
demonstrated that the barriers posed by complex, non-linear
chemistry can be overcome.

The multi-dimensional system that describes OH be-
haviour is well suited for study via machine learning ap-
proaches. We have previously demonstrated the utility of
neural networks (NNs) for quantifying differences in OH
among a small group of chemical transport models (CTMs),
which rely on the specification of meteorological conditions
(Nicely et al., 2017). Other groups have similarly shown the
promise of machine learning techniques to better parame-
terize within models such complex processes as convection
(Gentine et al., 2018), radiative transfer (Krasnopolsky et al.,
2009), ozone production (Nowack et al., 2018), and depo-
sition (Silva et al., 2019), and to replace the numerical in-
tegrators that simulate chemistry within models (Keller and
Evans, 2019). NNs in particular are capable of modelling
complex non-linear functions, making them a suitable tech-
nique for studying the non-linear chemistry involved in OH
production and loss. The community continues to develop
best practices for harnessing the power of machine learning
for applications in atmospheric science. We build here on the
specific application of NNs to better understand model rep-
resentations of OH.

In this study, we apply an NN approach to quantifying
the causes of OH differences to the large group of models
that participated in the Chemistry-Climate Model Initiative
(Eyring et al., 2013). We repeat our earlier analysis that iden-
tifies the primary drivers of OH and τCH4 differences among
model simulations conducted with specified dynamics, for a
single year. We then expand the approach to study temporal
variations in OH for 1980–2015, allowing for attribution of
trends and interannual variability in τCH4 to specific param-
eters. Finally, we compare the derived trends in OH simu-
lated by the CCMI models to trends derived from a previous
observation-based study.

2 Model simulations

CCMI, carried out as an official activity of the Inter-
national Global Atmospheric Chemistry (IGAC) and the
Stratosphere-troposphere Processes And their Role in Cli-
mate (SPARC) communities, seeks to enable intermodel
evaluation of chemistry–climate models (Eyring et al., 2013).
Phase 1 of CCMI has designed a set of simulations, cov-
ering both historical and future timeframes, with prescribed
emissions inventories such that the interactive chemistry and
its interplay with dynamical and radiative processes can be
robustly compared between models. The analysis presented
here focuses on one simulation, the historical specified dy-

namics (SD) simulation from 1980 to 2010 (REF-C1SD)
(Hegglin and Lamarque, 2015; Morgenstern et al., 2017).
Details of the emissions inventories recommended for this
simulation can be found in Eyring et al. (2013). We have also
performed the intermodel comparison portion of this analy-
sis (Sect. 3.2) for the historical free-running simulation con-
ducted from 1960 to 2010 (REF-C1). However, since a com-
prehensive examination of OH within the REF-C1 simula-
tions was conducted by Zhao et al. (2019), those results are
presented in the Supplement. We also include output from
models that are not formal participants in CCMI but provided
simulations comparable to those being used here. These ad-
ditional models are described below. Monthly mean fields are
used for the various chemical, physical, and radiative param-
eters necessary for evaluating OH, described in Sect. 3. We
analyse all models that include and provided output for the
complete list of these variables.

Models that participated in the REF-C1SD simulation
were nudged toward reanalysis meteorological fields such
that dynamical conditions are represented with historical ac-
curacy. The details of how nudging – of the winds, temper-
ature, and sometimes pressure and water vapour fields – is
conducted can be found in Morgenstern et al. (2017, Ta-
ble S30). The nudging of these models to common fields
does not necessarily improve model agreement, however,
as in the case of large-scale tropospheric transport (Orbe
et al., 2018). Particularly relevant to this analysis is the
nudging of specific humidity, which is only performed in
the MOCAGE model, of the models we analysed. Models
that produced REF-C1SD simulations for CCMI and pro-
vided the necessary output to complete this analysis include
CAM4-Chem (Tilmes et al., 2016), EMAC-L47MA, EMAC-
L90MA (Jöckel et al., 2016), MOCAGE (Josse et al., 2004;
Guth et al., 2016), MRI-ESM1r1 (Deushi and Shibata, 2011;
Yukimoto et al., 2012), and WACCM (Marsh et al., 2013;
Solomon et al., 2015; Garcia et al., 2016). For both configu-
rations of the EMAC model, the simulations that included
nudging of wave-0 temperatures were used (Jöckel et al.,
2016). All models, here and including those described below,
include interactive stratospheric chemistry.

Four models also contributed SD-type simulations to be
analysed alongside the REF-C1SD CCMI simulations. The
Goddard Earth Observing System (GEOS) model (Molod et
al., 2015) conducted a “Replay” run, meaning the general
circulation model computes its own meteorological fields for
a 3 h simulation period, then calculates the increment neces-
sary to match a pre-existing reanalysis dataset, in this case
the Modern-Era Retrospective Analysis for Research Appli-
cations version 2 (MERRA-2). The increment is then ap-
plied as a forcing to the meteorology at every time step
during a second run of the same simulation period. This
simulation includes full interactive tropospheric and strato-
spheric chemistry from the Goddard Modeling Initiative
(GMI) chemical mechanism (Nielsen et al., 2017) with out-
put for the years 1980–2018 at 0.625◦× 0.5◦ horizontal res-
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olution and 72 vertical levels (Orbe et al., 2017; Stauffer et
al., 2019; Wargan et al., 2018). This simulation is referred
to as “GEOS Replay”. Additionally, three chemical trans-
port models (CTMs), which directly rely on established me-
teorological fields such as MERRA-2 rather than calculate
them, provided output used in this analysis. The OsloCTM
and GEOS-Chem CTM output all required variables for the
year 2000, while the GMI CTM (Strahan et al., 2013) sim-
ulated the full 1980–2015 period. All CTMs except GEOS-
Chem calculate water vapour interactively in the troposphere.
GEOS-Chem instead uses specific humidity fields from the
MERRA reanalysis. We note that, while the GEOS Replay
simulation described above used the GMI chemistry pack-
age, all discussion of the simulation from “GMI” refers to
the separate, stand-alone CTM. While CTMs read in and use
external meteorological fields rather than “nudging” or “re-
playing” internally calculated fields, we expect them to simi-
larly represent realistic meteorological conditions for a given
year. As such, we group them with the REF-C1SD simula-
tions from CCMI, bringing the total number of SD-type sim-
ulations analysed to 10.

3 Methods

3.1 Neural network setup

Neural networks are generated to predict the monthly mean
OH mixing ratio for a given model following the method out-
lined in Nicely et al. (2017). Briefly, four NNs are trained
for one model, each for one simulation month. To reduce
the computational demands of NN training, we only estab-
lish NNs for four months, one for each season: January,
April, July, and October. Separate NNs are trained for the
SD (main text) and free-running (Supplement) simulations,
and all training is performed with output from the year 2000.
Each model grid box located below the tropopause (thermal,
following the WMO definition, for all models except GEOS
Replay, which uses a “blended” tropopause calculation com-
bining thermal and potential vorticity definitions) is a single
sample, so sample sizes are determined by a model’s verti-
cal and spatial native resolution. The number of tropospheric
model grid points, and thus the training dataset sample size,
is indicated for each model in Table S1 in the Supplement and
always exceeds 100 000. Because separate NNs are trained
for each month, and monthly mean output from each model
simulation is used as input and training data, the dataset does
not represent diurnal variations in OH chemistry.

The training process adjusts weighting factors such that
mixing ratios of OH are predicted accurately when 3-D fields
of the following variables are input to the NN: pressure, lati-
tude, temperature (T ), ozone (O3), specific humidity (H2O),
methane (CH4), the sum of nitrogen oxide and nitrogen diox-
ide (NOx ≡ NO+NO2), the ratio NO : NOx , carbon monox-
ide (CO), isoprene (ISOP=C5H8), formaldehyde (HCHO),

the photolysis frequency of NO2 (JNO2), the photolysis fre-
quency of ozone to excited state O(1D) (JO1D), and strato-
spheric ozone column (O3 COL). Note that many of the
inputs covary with one another depending on the chemi-
cal regime or meteorological conditions. A strength of the
NN approach is that the inputs chosen need not be indepen-
dent of each other. The NOx and NO : NOx inputs are cal-
culated using monthly mean NO and NO2 fields. All chem-
ical species are input to the NN as unitless mixing ratios,
except for methane, which is normalized by the maximum
tropospheric value and indicated by the notation CHNORM

4 .
This normalization enables direct comparison of methane
distributions between models, despite the fact that the use
of boundary conditions sometimes results in substantially
different amounts of methane between models. (While the
CCMI models generally used roughly consistent boundary
conditions, the additional simulations that were not formally
part of CCMI exhibit methane concentrations outside the
ranges of those in the CCMI models.) Pressure is provided
in units of hPa, temperature in K, photolysis frequencies in
s−1, and O3 COL in Dobson units (DU). Three of the inputs
– HCHO, NO : NOx , and O3 COL – have been introduced
to this analysis after the work of Nicely et al. (2017), due to
availability of output from all models and to the added infor-
mation they encompass that may be relevant for OH chem-
istry. For instance, having knowledge of the partitioning of
NOx likely enables one to more accurately predict OH quan-
tities compared to knowing just the total abundance of NOx .
Likewise, the introduction of O3 COL is somewhat redun-
dant when its primary effect on OH is through attenuation
of ultraviolet (UV) flux to the troposphere, which is already
encompassed by the input JO1D. However, JO1D is also al-
tered by other factors such as clouds, which cannot as easily
be included as an input for this analysis (some models pro-
vide 2-D cloud fraction fields, others output 3-D fields, and
still others do not give any metric regarding clouds). Whether
strong differences in JO1D are caused by clouds or overhead
ozone should be clarified by inclusion of O3 COL as an input.

The neural network architecture is consistent with that of
Nicely et al. (2017) and is shown in Fig. 1. However, the
number of computational nodes was doubled from 15 to 30
given the availability of more powerful computing resources.
Two hidden layers each containing 30 nodes provided strong
performance of the NN in reproducing the OH mixing ra-
tios from a given model. For training, the model output is
randomly split 80 %/10 %/10 % into training, validation, and
test datasets. During that process, the data from the train-
ing set are used to actively adjust weighting factors, and the
validation set is evaluated to determine a training stopping
point. When errors in predicting the validation data grow af-
ter adjusting weighting factors some number of iterations in
a row, it is determined that the NN model prior to the growth
in errors likely reached a local minimum in its cost func-
tion. This manner of “early stopping” helps to prevent over-
fitting, though application of the NNs to alternative years

Atmos. Chem. Phys., 20, 1341–1361, 2020 www.atmos-chem-phys.net/20/1341/2020/



J. M. Nicely et al.: Machine learning OH differences from CCMI 1345

Figure 1. Architecture for neural networks generated in this study.
Blue boxes designate inputs (left) and output (right), red triangles
indicate bias terms, green circles indicate nodes at which activation
functions are performed, and grey arrows represent the weighting
terms, which are optimized through the training process. For full
details of the neural network setup and training, we refer readers
to Nicely et al. (2017). Although 15 nodes are shown here in each
hidden layer, 30 were actually used for all NNs in this study.

is not immune to overfitting, an issue discussed further in
Sect. 4.3.1. For further application of this method across
varying timescales, we would recommend a more method-
ical approach to sampling model output in time as well as in
space. The final 10 % of data is then used to independently
test the resulting NN and compare between different train-
ing iterations. A total of five trainings were performed for
each NN, and the NN with best performance (evaluated by
the correlation coefficient from comparison of NN-calculated
and model-simulated OH values) was chosen as the NN to
be used in further analysis. Further details of the training
process and evaluation metrics can be found in Nicely et
al. (2017).

We note that alternative machine learning algorithms have
seen increased application to problems within atmospheric
science in the last few years and may be equally or even
better suited than neural networks for studying non-linear
chemical systems. In particular, random forest regressions
and gradient-boosting techniques offer greater computational
efficiency and, in the case of random forests, have the ca-
pability to quickly identify which inputs are most strongly
influencing the calculated output, known as “feature impor-
tance” (Hu et al., 2017; Grange et al., 2018; Liu et al., 2018;
Keller and Evans, 2019). Additionally, linear regression al-
gorithms such as Ridge and Lasso regression may be bene-
ficial in curbing issues related to extrapolation. We also do
not intend to suggest that our chosen NN input list, architec-
ture, and general method are the best approach; input vari-

ables were largely determined by available output, and ar-
chitecture testing was conducted on the computing resources
available at the time of the study. It is possible that a single
NN could suffice for predicting OH variations throughout an
entire year, rather than for just a single month, following me-
thodical subsampling methods to create the initial training
dataset. As such, we encourage exploration of modifications
to this method as well as additional algorithms for future ma-
chine learning applications to atmospheric chemistry.

3.2 Intermodel comparison approach

Once NNs are established for each model, an analysis is con-
ducted to quantify the OH and τCH4 differences attributable
to individual input terms. To accomplish this, each model,
A, is paired with another model, B, such that one input to the
NN of model A is substituted with the same field from model
B. All other inputs are held fixed, using fields from model A
for the year 2000. Fields are interpolated to the resolution of
the native model, A in this case, bilinearly across latitude and
longitude, and linearly in log(pressure) space for the vertical
coordinate. Any resulting changes in OH can then be directly
attributed to the substituted variable.

The “swaps” that are performed in the manner described
above undergo a process we refer to as “extrapolation con-
trol,” which restricts the substituted variable from leaving
the range of values over which the native model’s NN was
trained. For example, if O3 is being substituted from CAM4-
Chem into the GMI NN, we not only check that a given
CAM4-Chem O3 value lies within the minimum and max-
imum GMI tropospheric O3 values but also that the GMI
value of CO at that grid point can be associated with the
new CAM4-Chem O3 value. This check is performed across
all variables and essentially prevents the substitutions from
venturing too far outside of the chemical regimes simulated
within the native model. In the case that a swapped variable
exceeds the acceptable range of values, it is revised up or
down accordingly. For reference, we tally the number of in-
stances in which extrapolation control is invoked for two cat-
egories: coarse adjustments, when a NN input value from an-
other model falls entirely outside the range of the NN input
values from the native model, and fine adjustment, when a
value from another model must be tweaked to preserve the
native model’s chemical regimes. On average, coarse adjust-
ments are incurred for 3.5 % of all swapped data points, while
fine adjustments are made to 18.8 % of swapped values. We
find that extrapolation control is critical to achieve mean-
ingful results with the NN intermodel comparison method,
though it necessarily forces the attributed changes in OH and
τCH4 to be conservative estimates.

Metrics used to evaluate the results of variable swaps in-
clude tropospheric OH integrated columns for visualization
and changes in τCH4 for a globally summed quantity. Tro-
pospheric columns are integrated vertically and weighted by
the mass of methane and the temperature-dependent rate con-
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stant of reaction between OH and methane. The global mean
lifetime of methane is found using Eq. (1):

τCH4 =

∑
Mair×χCH4∑

[OH]× kOH+CH4 ×Mair×χCH4
, (1)

where Mair is the mass of air within a grid box, brackets de-
note number density, χ denotes mixing ratio, kOH+CH4 is
the reaction rate constant for the OH+CH4 reaction cal-
culated for each grid box temperature, and summations are
performed over all tropospheric model grid boxes. This for-
mulation is equivalent to the standard lifetime calculation of
burden divided by loss rate, adapted to the quantities most di-
rectly related to model outputs available (Chipperfield et al.,
2014). Again, we note that this is strictly the atmospheric
lifetime of methane with respect to loss by tropospheric
OH. If one additionally includes all stratospheric grid boxes
within the above summation, annual average lifetimes of al-
most all models consistently increase by ∼ 1.2 years.

3.3 Time series evaluation approach

A new element of this analysis applies the already-
established NNs of each model to examine the time evolu-
tion of OH over several decades of simulation. For this, we
focus on the REF-C1SD simulation set, as it contains the
most realistic representation of historical emissions and me-
teorological conditions and thus is most likely to resemble
true OH variations. All models that provided SD-type sim-
ulations as described in Sect. 2.2 and 2.3 are included, with
the exception of GEOS-Chem and OsloCTM, both of which
only provided output for the year 2000. Using a similar swap-
ping technique as described in Sect. 3.2, the NN for a given
model is used to quantify the effect of substituting individ-
ual inputs from different years. No intermodel substitutions
are conducted; instead, a single input is taken from the var-
ious years of the simulation (1980–2015) while all other in-
puts are fixed to their 2000 values. Because all swaps are
performed on an intra-model basis, extrapolation control is
largely unnecessary, since that model’s chemical regimes do
not vary drastically from the original year 2000 training out-
put. However, we do see some instances, noted in Sect. 4.3,
of anomalous behaviour in the τCH4 results because some
variables undergo significant changes, particularly between
the 1980s and the training year (2000). Overall, the NN tech-
nique should be sufficiently generalizable to provide mean-
ingful results even when using inputs lying modestly outside
of the range of training values. Robustness of the results is
demonstrated by the emergence of several consistent features
between the eight models examined, as discussed in Sect. 4.

Figure 2. Seasonal variation in CH4 lifetime for the year 2000 for
the CCMI specified dynamics (REF-C1SD) and chemical transport
model simulations.

4 Results and discussion

4.1 Native model and NN performance

Figure 2 shows values of τCH4 found for all models that
produced SD-type simulations. Annually and globally aver-
aged lifetimes vary from 6.59 years (OsloCTM) to 8.41 years
(GMI). All models exhibit the expected seasonal variation
in τCH4 , with minimum values in the Northern Hemisphere
(NH) summer months due to higher OH at this time of year.
Specifically, the seasonal variation in the global mean is a re-
sult of greater anthropogenic influence in the NH and result-
ing increases in concentration of two OH precursors: ozone
and NOx .

An example of NN performance is shown for the January
WACCM model in Fig. 3, relative to the native model OH
fields. Tropospheric OH columns are shown for the model
and NN alongside the absolute value of the difference be-
tween the two. In general, the NNs from all models show
similar magnitudes and spatial patterns in their calculated
OH field, with errors somewhat randomly scattered and max-
imizing locally to values of∼ 10 % of the total column value.
Figures S1–S4 in the Supplement show the performance of
all NNs, for each of 10 SD-type model simulations and for
each of the four months, while Table S2 provides further
statistics on all NNs used here. Performance of all model
NNs for the year 2000 is strong, with values of τCH4 cal-
culated from the NN-generated OH field within 0.006 years
of the parent model’s τCH4 on average. The maximum error
in τCH4 , an overestimate by 0.012 years, occurs for the MRI-
ESM1r1 model in the month of January. Performance is gen-
erally poorest in boreal winter, with average offsets in τCH4

of 0.007 years, and strongest in boreal summer, for which the
mean bias is only 0.004 years.
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Figure 3. Tropospheric OH columns for the WACCM model REF-
C1SD simulation, January 2000. (a) Columns calculated directly
from the WACCM output; (b) columns calculated from the out-
put from the WACCM January NN run with inputs from the native
model; (c) difference in column values (NN – model). Methane life-
time values calculated from 3-D OH fields from WACCM and from
the WACCM NN are inscribed in panels (a) and (b), respectively.
The methane lifetime difference (NN – model) is noted in panel (c).

4.2 Intermodel comparison

The intermodel comparison component of this analysis can
be understood fundamentally by the OH and τCH4 differences
generated by substituting input fields between models. An

Table 1. Accounting of CH4 lifetime differences between GMI and
OsloCTM simulations for January 2000.

GMI OsloCTM

τ a
CH4,ORIG (year) 9.24 7.18

1τCH4 due tob: O3 −0.91 +0.79
JO1D −0.59 +0.60
HCHO −0.64 +0.51
NOx −0.45 +0.33
JNO2 −0.34 +0.15
Isoprene −0.03 +0.28
CO +0.19 −0.07
H2O +0.10 −0.13
CHNORM

4 +0.11 −0.06
NO/NOx +0.07 −0.05
O3 COL −0.02 −0.06
T −0.02 +0.00

1τ c
CH4,TOT −2.52 +2.30

τCH4,ORIG+1τCH4,TOT 6.71 9.48
Mech.d +0.47 −0.24

a τCH4,ORIG represents the value of τCH4 evaluated directly from the model.
b 1τCH4 calculated from output of NN when noted variable is substituted with
values from the other model. c Sum of all 1τCH4 values calculated for each input

substitution. d Remainder of original τCH4 difference not accounted for by NN
substitutions; calculated as τCH4,ORIG (model A)− [τCH4,ORIG
(model B)+1τCH4,TOT (model B)].

example of the OH column and τCH4 changes that are calcu-
lated through individual variable swaps is shown in Fig. 4.
The two models with the highest and lowest values of τCH4 ,
GMI and OsloCTM, respectively, are chosen for this exam-
ple. Swaps performed between the two models for the month
of January reveal that local O3, JO1D, HCHO, and NOx ac-
count for the largest differences in τCH4 for this particular
model pairing. A complete budgeting of the changes in τCH4

attributable to all inputs for GMI and OsloCTM is shown
in Table 1. Note that the values of τCH4 shown in Table 1
correspond to lifetimes for the month of January rather than
annual averages and so will differ from the lifetimes noted at
the beginning of Sect. 4.1.

It is worth discussing several features that are evident in
the visualized OH changes shown in Fig. 4. First is the spa-
tial distribution of the OH variations. Depending on how the
sink or source term undergoing the swap affects OH chem-
istry, the strongest impacts may occur in localized areas or
may distribute evenly over the globe. For instance, varying
local ozone and NOx (Fig. 4a, b and g, h, respectively) exert
the greatest influence on OH over the climatological trop-
ics, with maximum impacts over land but extending over the
oceans as well. This is likely a result of the anthropogenic or
biomass burning emissions sources, which limit the largest
differences in ozone and NOx between the two models to
areas proximate to the South American, African, and In-
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Figure 4. Changes in tropospheric OH column resulting from the swap of indicated variable from another model into the NN of the native
model for the specified dynamics simulation of January 2000. Swaps of the inputs O3 (a, b), J (O3→ O1D) (c, d), HCHO (e, f), and
NOx (g, h) are shown for the GMI (a, c, e, g) and OsloCTM (b, d, f, h) NNs.
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donesian source regions for the month of January. The OH
changes resulting from substitutions of the inputs JO1D and
HCHO, however, are distributed over oceans as well as over
land masses and, in the case of HCHO, are strongest in re-
mote marine regions. This pattern is common for species that
influence OH chemistry through mechanisms that are largely
independent of local emissions. In the case of HCHO, its role
as a secondary source of OH through methane oxidation is
relatively more important in the absence of large VOC con-
centrations; thus, its stronger influence is seen away from ter-
restrial vegetation.

The second feature to note in Fig. 4 is the symmetry be-
tween input swaps in opposing directions. In other words,
the swap of an input from OsloCTM into the GMI NN gen-
erally yields OH column and τCH4 changes that are equal but
opposite to the changes resulting from use of a GMI input in
the OsloCTM NN. With few exceptions, almost all regions of
OH increase (red) in one model’s NN are matched by OH de-
creases (blue) in the other model’s NN in Fig. 4. The changes
in τCH4 are correspondingly similar in magnitude but oppo-
site in sign. This behaviour is expected because a swap that
may, e.g. increase an OH precursor and subsequently cause
an increase in OH for one model will manifest as a decrease
in that same precursor when the substitution occurs in the
NN of the other model. While this pattern occurs for the vast
majority of cases across all model pairings and swaps per-
formed for this analysis, there are instances when symmetry
is not maintained. This could happen for two reasons.

First, the sensitivities of the two models to a particular
change in an OH precursor or sink could differ. For example,
one model may be sensitive to an increase in isoprene, caus-
ing OH concentrations to drop in response. Another model
may incorporate buffering effects, such as reactions involv-
ing oxidized volatile organic compounds (Taraborrelli et al.,
2012; Lelieveld et al., 2016) that allow OH to be recycled
following its reaction with isoprene, causing it to be less sen-
sitive to the same change in methane. We refer to these vari-
ations in model sensitivities as chemical mechanism differ-
ences, as they are most likely a result of the chemical reac-
tions, species representations, or reaction rates implemented
within a model’s chemical mechanism.

The second explanation for lack of symmetry in the OH re-
sponse to a model swap is a forced asymmetry in the swapped
inputs themselves, imposed by the extrapolation control tech-
nique described in Sect. 3.2. It is possible that the swap of
an input in one direction, i.e. from Model A to Model B,
could proceed with no alteration to the substituted variable,
while the swap in the other direction, i.e. from Model B to
A, results in the variable lying outside the trained range of
Model A. The extrapolation control process will revise the
substitute variable field from Model B, such that the differ-
ence between it and the native field from Model A is less-
ened. As such, the first swap into the NN of Model B will
yield a larger magnitude change in the input as compared
to the swap into the NN of Model A. The impact of these

factors is indirectly quantified through a remainder term that
falls out of a full budgeting analysis, described below.

A third consideration in interpreting the information pre-
sented in Fig. 4 is the conditions that must be met in order for
a large change in OH to manifest through this analysis. First,
the two models between which a swap is conducted must ex-
hibit differences in the parameter of interest. Should the two
models exhibit, e.g. very similar ozone fields, then swapping
one model’s O3 with the other’s will produce little difference
in the NN-calculated OH. Second, the model must have some
OH sensitivity to the variable being swapped. If a model is
insensitive to changes in methane, swapping in a drastically
different methane field may not cause a perceivable differ-
ence in OH. Therefore, the absence of an OH response does
not necessarily mean that input fields are similar between
models. Conversely, the existence of large OH changes indi-
cates that differences in the swapped input field exist between
the two models and that the native model demonstrates a de-
pendence of OH on that input variable.

A fourth issue is the fact that NNs can exhibit some de-
gree of random behaviour based on how they were trained
and initialized. Our method involved training five NNs and
selecting from those the one that performed best when com-
pared to the independent test dataset. That single NN was
used in all subsequent analysis. However, it is a useful ex-
ercise to evaluate the role of NN randomness in our results.
We show, in Figs. S5 and S6, the left and right panels of
Fig. 4, reproduced for the alternate NN trainings of the GMI
and OsloCTM models, respectively. A visual comparison of
tropospheric OH column differences among the five train-
ings of each model’s NN reveals markedly similar spatial
distributions and magnitudes. The values of calculated τCH4

changes (1τCH4 ) do differ somewhat between the training
instances, with larger effects on some variable swaps than
for others. For instance, the standard deviation of the val-
ues of 1τCH4 calculated for all five trainings of the GMI
NN is about 0.2 years for the J (O1D) and HCHO swaps but
less than 0.05 years for O3 and NOx . We note, though, that
some of the NNs displayed in Figs. S5 and S6 exhibit worse
performance than the one ultimately chosen for subsequent
use. As a result of this exercise, the uncertainties resulting
from this analysis method may be considered, at most, to be
∼ 0.2 years.

The final point of interest in Fig. 4 is the general consis-
tency in the signs of OH and 1τCH4 for each model. The
substitutions of all four variables generally cause an increase
in OH within the GMI NN (and corresponding decrease in
τCH4 ) and a decrease in OH (increase in τCH4 ) within the
OsloCTM. This feature is most pronounced for this partic-
ular pair of models due to our reasoning for choosing them:
they exhibit the largest difference in τCH4 among our group
of 10 models. Because the native GMI model has a longer
τCH4 value compared to OsloCTM, it makes sense that in-
corporation of OsloCTM’s various OH precursor and sink
fields into the GMI NN will tend to decrease the GMI τCH4 ,
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bringing it into closer agreement with that of OsloCTM. This
characteristic points to the utility of this analysis as a budget-
ing tool for quantifying the cause of the difference in τCH4

between two models. The τCH4 accounting for the GMI and
OsloCTM set of swaps conducted for January is shown in
Table 1. When considering all 12 variable swaps that were
performed, the NN analysis more than explains the original
gap in τCH4 between the two models. The GMI January life-
time of 9.24 years is decreased to 6.71 years (τORIG+1τ )
after summing all 1τ values, while the OsloCTM lifetime
is increased from 7.18 years to 9.48. This budgeting rarely
provides a perfect accounting of the τCH4 gap due to the
same reasons that give rise to asymmetric OH responses to a
given swap: chemical mechanism differences and asymmet-
ric swaps of inputs due to extrapolation control. As a result,
a remainder term, found as the difference between the other
model’s τORIG and the present model’s τORIG+1τ , is at-
tributed to these factors. This term is listed in the last row of
Table 1 with the label “Mech.”

Results from analysing individual model pairs reveal a
multitude of insights regarding idiosyncrasies in emissions
of, global distributions of, and OH sensitivities to the vari-
ous input parameters. These results, available in the archived
dataset described in the data availability section, may be es-
pecially useful to the reader with an interest in a partic-
ular species or model. However, with over 4000 plots (12
species× 10 models× 9 submodels× 4 months= 4320) and
180 τCH4 budget tables generated, it is beyond the scope of
this paper to highlight and explain every interesting feature.
Instead, we aggregate the results across all models to iden-
tify some primary conclusions. Figure 5 shows the change
in τCH4 for a specific model and substituted input variable,
averaged over all nine pairings. For example, the data point
shown for CAM4-Chem JO1D is calculated from the nine
1τCH4 values obtained when swapping the JO1D fields from
the other nine models into the CAM4-Chem NN. The circu-
lar point represents the mean of those nine values, while the
whiskers indicate 1 standard deviation about the mean. Ag-
gregate results shown in this manner are compiled both for
individual months (available in the archived dataset noted
above) as well as for annually averaged output. The latter
is calculated as the average of the four monthly mean and
standard deviation values, and is shown in Fig. 5.

As with the individual OH tropospheric column change
plots (Fig. 4), numerous conclusions can be drawn by study-
ing the aggregated results in Fig. 5. The method for read-
ing the data in Fig. 5 is demonstrated in the following ex-
ample. The mean 1τCH4 value attributable to JO1D for the
WACCM model is +0.99 years. This indicates that use of
JO1D fields from other models causes τCH4 to increase by
∼ 1 year, meaning the native JO1D field from WACCM im-
parts a low bias to τCH4 of 1 year, relative to the other mod-
els. A low τCH4 would result from OH concentrations being
too high. Since OH and JO1D are positively correlated (i.e.
JO1D can be thought of as a source for OH), the too-high OH

is an indication of too-high JO1D. In general, positive values
of 1τCH4 correspond to relative high biases in input parame-
ters that are source terms for OH and to low biases for species
that instead serve as sinks. This reasoning is less straightfor-
ward for species such as HCHO, which can both produce and
consume OH, while it is also produced by OH-initiated oxi-
dation. We stress that these comparisons are strictly relative
to other models, not to any observation or other indication of
truth. So, points that appear as outliers in Fig. 5 should not
necessarily be interpreted as an erroneous result but rather
considered an area for further examination.

The ordering of variables along the x axis of Fig. 5 denotes
the average magnitude of 1τCH4 values across all models,
with parameters on the left accounting for the largest τCH4

differences. As such, JO1D is the largest driver of OH dif-
ferences in the CCMI SD model simulations, followed by
local O3 and NOx . The subsequent variables (H2O, CO, the
NO : NOx ratio, and HCHO) cause moderate variations in
tropospheric OH, while ISOP, CH4, JNO2, O3 COL, and T
are not responsible for intermodel spread in τCH4 . We note
that T differences between the SD simulations are likely lim-
ited due the meteorological constraints imposed on the mod-
els. However, examination of the free-running simulations,
discussed in the Supplement, also shows practically no im-
pact of T on OH. Thus, we conclude that the effect of tem-
perature on OH chemistry is likely indirect, acting through
pathways embodied by other variables, such as H2O and
species that exhibit strongly temperature-dependent reaction
rates. Finally, the Mech. term, described in the discussion of
Table 1, appears on the far right, indicating its origins as a
remainder term from the budget analysis of individual model
pairs. The magnitudes of 1τCH4 values attributed to chem-
ical mechanism differences and asymmetric swaps between
models are large enough to consistently rank the Mech. term
third, between O3 and NOx , in terms of importance for OH
in this analysis. Especially in model simulations conducted
with common emissions inventories (though inventories can
be implemented very differently among models, as demon-
strated by Young et al., 2013), we expect some of the dis-
parity in a short-lived species like OH to emerge from dif-
ferences in chemical mechanism implementations. In other
words, when responses in OH to a given change in a source or
sink term differ between two models, the remainder term (or
term labelled “Mech.” in Table 1) will increase, representing
variations in the sensitivity of OH that presumably arise due
to the two different implementations of the chemical mecha-
nism. It is possible that other factors are represented by this
term; e.g. other chemical species that influence OH chemistry
but are not considered in the NN analysis could contribute
to the Mech. term. However, previous analysis using a 0-D
chemical box model as a “standard” mechanism in Nicely et
al. (2017) suggested a correlation between actual biases in
OH imparted by a given model’s chemical mechanism and
the remainder term resulting from the NN analysis. There-
fore, we have some confidence that the Mech. term is mean-
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Figure 5. Averaged changes in CH4 lifetime accrued for a specified model (colour), across all swaps of the indicated variable (x axis) from
all other models. Results are shown annually averaged for the year 2000 of the specified dynamics REF-C1SD CCMI and chemical transport
model simulations. Circles indicate the mean change in CH4 lifetime; bars represent the 1σ standard deviation from all model pairings.
Variables along the x axis are ranked by averaged magnitude of the 1τCH4 values (i.e. inputs located farther left are responsible for larger
differences in CH4 lifetime), except for the “Mech.+Nonlin.” term, which is shown last to indicate its role as a remainder term. Model
name abbreviations are “CAM4” for CAM4-Chem, “EM47” for EMAC-L47MA, “EM90” for EMAC-L90MA, “GRep” for GEOS Replay,
“GCHM” for GEOS-Chem, “GMI” for GMI, “MOC” for MOCAGE, “MRI” for MRI-ESM1r1, “OSLO” for OsloCTM, and “WACC” for
WACCM.

ingful, though significant further study would be required to
parse the actual mechanistic differences responsible for im-
parting bias in OH calculations.

Significant intermodel differences in the largest driver of
τCH4 spread, JO1D, could arise from two possible sources.
The amount of solar UV light penetrating down to the tropo-
sphere is largely dictated by the stratospheric column ozone
amount. However, the differences in total ozone column are
generally small and insufficient to cause the variations in
JO1D seen among the CCMI models. Rather, JO1D likely
varies to a great extent due to differences in cloud cover,
and dissimilar treatments of clouds within model photolysis
codes. Figure S7 highlights this effect by showing the ratio
of JO1D at the surface to JO1D in the upper troposphere
(UT) for each model. The relatively small column amounts
of ozone within the troposphere should account for very lit-
tle absorbed UV light, making it much more likely that de-
viations in this ratio from 1.0 are driven by scattering due
to clouds and possibly aerosols. The fact that models show
large spatial differences in this ratio is a strong indication
that clouds underlie the model differences in JO1D.

While the model differences in JO1D, O3, NOx , and
chemical mechanisms appear to drive the bulk of the τCH4

spread among this group of CCMI models, we emphasize
that individual models may not adhere to these conclusions.
As such, any efforts to improve a particular model should in-
stead focus on the results specific to that model. For instance,
HCHO plays a very small role in describing intermodel dif-
ferences in OH on average, but for the OsloCTM model,
HCHO is a much more important factor. Thus, we refrain
from offering an across-the-board solution for remedying the

large model spread in τCH4 and instead suggest a more indi-
vidualized approach of studying plots such as those shown
in Fig. 4 for more spatially and temporally resolved informa-
tion. Visualizations of all model swaps, for all months and
species, are available in our archived dataset described in the
data availability section for this purpose.

There are several other qualifications to note when con-
sidering the results of the intermodel comparison. One is the
negating effect between the JO1D and tropospheric O3 vari-
ables. Many, but not all, model 1τCH4 values for JO1D in
Fig. 5 are opposite in sign to the 1τCH4 values attributed to
O3. Physically, photolysis of tropospheric ozone by light at
wavelengths below 336 nm to form excited state O(1D) and
subsequent reaction with H2O to form OH is a loss path-
way for ozone. Therefore, more UV flux will tend to decrease
tropospheric ozone concentrations while increasing OH, and
vice versa. This physical mechanism, then, can explain the
frequent cancellation of the 1τCH4 values attributed to these
two factors. Should a modeller attempt to alter a model’s OH
field by forcing adjustments in its JO1D, the opposing im-
pact of tropospheric O3 may result in no change for the value
of τCH4 . However, this does not preclude the finding that both
JO1D and tropospheric O3 are substantially different in the
models for reasons we do not fully understand. Tropospheric
ozone can also vary between models for reasons external to
the radiative environment. For instance, differences in the
stratosphere–troposphere exchange, wet and dry deposition,
and lightning NOx emissions can each cause substantial vari-
ations in tropospheric ozone among models (Wild, 2007).
Further parsing of the reasons for the ozone differences seen
among the CCMI models is difficult without specialized out-
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put, including tracers such as ozone of stratospheric origin
and NOx generated by lightning. We recommend a targeted
study to address the underlying reasons for the variations in
tropospheric ozone.

Another qualification concerns the issue of causation ver-
sus correlation. Machine learning techniques, and NNs in
particular, are generally more adept at identifying the pre-
dictors of a certain phenomenon than traditional methods,
such as multiple linear regression. However, it is still pos-
sible that an input that is tightly correlated with the output
may be misidentified as a driver of variations in the output.
This is particularly relevant to keep in mind for species that
serve as sinks of OH, such as CO and methane. Whether a de-
cline in OH initiates or results from an increase in its sinks is
difficult to differentiate, even with advanced analysis meth-
ods. Therefore, descriptions of CO and methane as drivers of
OH variations in this text may just as well be interpreted con-
versely, as downstream indicators of the change in oxidizing
capacity.

A final qualification is this analysis constitutes a founda-
tionally hypothetical experiment. It essentially addresses the
following questions: what if we could switch the fields of
just one chemical species between two global models? What
would be the instantaneous impact on OH? On τCH4? This
approach, then, necessarily neglects the roles of feedbacks in
the atmospheric system (e.g. if the NOx field is perturbed,
this will propagate to changes in ozone as well, with time).
However, for the objective of teasing apart the influences on
global OH abundance and τCH4 and explaining intermodel
differences, a notoriously difficult task, we regard our ap-
proach as a valuable exercise.

4.3 Time series evaluation

The second half of our NN analysis interrogates temporal
trends in OH and τCH4 . Figure 6 shows the evolution of τCH4

in the SD-type simulations conducted for 1980–2010. Two
models, GEOS-Chem and OsloCTM, only provided output
for the year 2000 and thus only appear as single points in
Fig. 6. In addition, some models provided output beyond
the year 2010; output from years through the end of 2015
was included when available. The lifetimes all show a gen-
eral downward trend over time, consistent with the upward
trend in global mean tropospheric OH concentration shown
by Zhao et al. (2019; their Fig. 4). Results concerning attribu-
tion of the τCH4 time series are presented in Sect. 4.3.1, while
derivation and analysis of trends are shown in Sect. 4.3.2.

4.3.1 Attribution of the τCH4 time series

Swaps of input variables to a NN are conducted on an intra-
model basis, with the goal of determining which OH precur-
sors and sinks are responsible for OH variations over time.
The results of these swaps are shown for each model in Fig. 7.
Changes in τCH4 attributable to each parameter are displayed

Figure 6. Time series of CH4 lifetime from REF-C1SD models.
Only 1 year of output was available for two models (OsloCTM and
GEOS-Chem), so their results are shown only as a single data point
for the year 2000.

as a function of year. Because we use the same NNs estab-
lished for the intermodel comparison described in Sect. 3.2
trained on output from the year 2000, the values of1τCH4 for
all species in the year 2000 of Fig. 7 is zero by design. As an
input field from another year is swapped into the NN, how-
ever, OH differences manifest and are denoted by the corre-
sponding change in τCH4 . Because we are relying on the same
NNs used for the intermodel analysis, we emphasize that the
methane fields used here are still normalized, separately for
each year. As a result, the variations in τCH4 due to CHNORM

4
should not be interpreted as a measure of the methane feed-
back factor (Prather et al., 2001; Fiore et al., 2009; Holmes et
al., 2013; Holmes, 2018). Instead of representing the change
in OH with a change in absolute concentration of methane,
the numbers shown here signify the change in OH with a
change in how methane is distributed within the atmosphere,
both vertically and spatially. Largely, one would expect this
to remain constant over time, though results from this analy-
sis of the CCMI simulations suggest there are some modest
changes in τCH4 attributed to the distribution of tropospheric
methane. Should a similar method be applied to analysis of
temporal variations in OH in the future, we would encourage
training the machine learning algorithm on data spanning all
years such that use of methane absolute values would be pos-
sible.

While significant diversity in the drivers of OH variabil-
ity across models is evident from Fig. 7, there are also sev-
eral distinctive features that appear repeatedly. For instance,
the response of τCH4 to changes in CO shows a prominent
peak in the year 1998 in all models except one. To gauge
the role of emissions in this response, we show in Figs. S8–
S12 the time series of CO mixing ratios and other parameters
averaged for the region most impactful to τCH4 : the tropical
lower troposphere (latitudes between 30◦ S and 30◦ N, pres-
sures greater than or equal to 700 hPa). Indeed, CO mixing
ratios maximize in almost all models in the year 1998, likely
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Figure 7. Attributions of changes in CH4 lifetime relative to the year 2000 of the REF-C1SD simulations. Within the NN of a given model,
use of individual inputs (indicated by colour) from years other than 2000 result in a change and OH and subsequent CH4 lifetime, shown
here. The variations attributable to CH4 are labelled “CHNORM

4 ” to designate the use of normalized CH4 fields as inputs to the NNs, as
described in Sects. 3.1 and 4.3. As a result, OH changes due to CHNORM

4 represent impacts of changes in how CH4 is distributed within the
troposphere, rather than how CH4 concentrations are changing over time.

as a result of the emissions inventory reflecting the extreme
biomass burning and strong El Niño–Southern Oscillation
(ENSO) event during that and the preceding year (Duncan
et al., 2003 and references therein). The increase in τCH4 can
thus be explained by the increased CO sink of OH, causing
a temporary depletion of the oxidant. In addition, less dis-
tinctive peaks in τCH4 due to CO are identified in other years
with strong El Niño conditions, notably 1982–1983, 1987,
and 1991–1992 (Duncan et al., 2003).

The impacts of several other variables on τCH4 also
demonstrate behaviour with reasonably identifiable causes.
A prolonged decrease in τCH4 due to JO1D from 1992 to
1998 is evident in the analysis of the CAM4-Chem, GEOS
Replay, GMI, MRI-ESM1r1, and WACCM NNs. This may
correspond to several confounding events that acted to in-
crease the flux of UV light to the troposphere, increasing the
primary production of OH and decreasing τCH4 , as seen in
Fig. 7. First, solar activity reached a maximum around 1990,
after which the decline in sunspots correlated strongly with
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a decline in tropical total ozone columns (Duncan and Lo-
gan, 2008). Second, the eruption of Mount Pinatubo in 1991
likely impacted JO1D through the decrease in stratospheric
ozone that resulted (Tie and Brasseur, 1995; Aquila et al.,
2013). Finally, the prolonged ENSO event of 1990–1995 (Al-
lan and D’arrigo, 1999) may have caused reduction in cloud
cover due to drought conditions (Duncan et al., 2003). Inter-
estingly, the τCH4 response to H2O is moderately anticorre-
lated with CO. This is particularly evident for the year 1998
in many of the models, when large biomass burning events
occurred in many regions of the world, such as the boreal
forests of both Asia and North America, Central America
and Mexico, and Indonesia, which were attributed in part to
a strong El Niño in 1997 that transitioned in a strong La Niña
in 1998. Although strong ENSO events cause drought condi-
tions over some regions, it is more fundamentally associated
with warming sea surface temperatures and increased evap-
oration, particularly in the tropical Pacific Ocean. Thus, it is
reasonable that larger values of specific humidity will tend to
increase OH primary production during an El Niño year, as
suggested by the decrease in τCH4 shown in Fig. 7. An ap-
parent increase in ozone also coincides with the 1998 ENSO
event, determined by the decreasing component of τCH4 . The
prevalence of biomass burning would indeed cause increases
in tropospheric ozone through increased emissions of its pre-
cursors, CO, VOCs, and NOx . Additionally, the τCH4 re-
sponse to O3 shows the most distinguishable trend of all the
variables over the full 1980–2015 period. Steady decreases
in τCH4 due to O3 imply an increasing tropospheric ozone
burden, a modelling result supported by observations (Ver-
straeten et al., 2015).

We also note the appearance of spurious results in several
cases. The τCH4 responses to CHNORM

4 in EMAC-L47MA
and EMAC-L90MA as well as to O3 COL in MOCAGE ex-
tend to very large negative values in the early part of the time
series. To show the full extent of the EMAC τCH4 responses
to CHNORM

4 , we show alternate versions of Fig. 7b and c
with expanded y-axis ranges in Fig. S13. Chemical condi-
tions during the 1980s would differ most markedly from
the regimes simulated in the year 2000, on which the NNs
are based. Particularly for concentrations of methane, which
underwent monotonic rise aside from a stabilization period
from 2000 to 2007 (Turner et al., 2019), conditions in 1980
could be quite different. However, as was noted in Sect. 3.1,
methane inputs to the NNs are normalized against the max-
imum tropospheric value. The field of CHNORM

4 for each
year is likewise normalized against the maximum methane
for that year, so a strong response in τCH4 must indicate a
significant change in the distribution of methane, not just
in changes in its concentration over time. Indeed, Fig. S14
shows the normalized methane values used as input to the
NNs for the pressure level closest to the surface. For each
EMAC configuration (for the month in which the τCH4 re-
sponse shown in Fig. 7 is largest and most unphysical), the
methane distributions in the 1980s do show notable change

from the year 2000 distribution used for training. Specif-
ically, methane mixing ratios in the Southern Hemisphere
drop relative to the larger concentrations in the Northern
Hemisphere. Other models, such as WACCM, shown in the
bottom panels of Fig. S14, show practically no interannual
change in the methane distribution for a given month. This
behaviour in the EMAC model likely results from imple-
mentation of a Newtonian relaxation scheme to determine a
time-varying, latitude-dependent lower boundary condition
for methane (Jöckel et al., 2016). Our spurious NN result
may indeed be explained by a slowdown in the rate of in-
crease in methane concentrations at the lower boundary initi-
ated in 1980, evident in supplementary figure E1 of Jöckel et
al. (2016). While this method of determining boundary con-
ditions generally represents a more sophisticated treatment
of methane, within the context of this analysis, it imparts an
artificially strong signal in OH and τCH4 . Therefore, the un-
physical results in Fig. 7b and c due to CHNORM

4 indicate an
artefact due to the NN method, not a problem in the EMAC
model itself.

For the other occurrence of anomalous behaviour,
MOCAGE shows an unrealistically large response of τCH4

to O3 COL in the 1980s (Fig. 7f), a result not corroborated
by any other model. Figure S15 illustrates the likely cause of
this behaviour. While most models exhibit modest changes
in total O3 COL between 1980 and 2000, including GEOS
Replay shown in the top set of panels, the MOCAGE model
(bottom panels) shows much larger column amounts in the
year 1980. These values fall well outside the range of O3
COL amounts on which the NN was trained, so unrealistic
behaviour of the NN in this case is not surprising.

These examples of spurious results highlight an issue that
must be treated with caution when using machine learning
approaches. Because the application of our NN method to
time series analysis is an extension beyond the originally in-
tended purpose, not all NNs are sufficiently generalizable to
reliably reproduce OH for years other than the training year
(2000). To account for this, we evaluate each NN for all years
by inputting variables from each year. With this test, all in-
puts are changed, not just a single input at a time. The re-
sulting OH, as depicted in Figs. S16–S23 for select years,
compares well to the native model’s OH field for that year in
many cases but not in all. Considerable bias occurs at low OH
mixing ratios, though we note that near-zero concentrations
will likely not affect the resulting globally integrated τCH4

unless values are grossly overestimated. This evaluation also
represents a rigorous test of the NNs, as significant shifts in
numerous inputs at once might push the NN algorithm into
new phase space not encountered during training, much more
so than only changing one input at a time, which is our ap-
proach in the subsequent time series analysis. Nonetheless,
we limit the influence of poorly generalizable, or “overfit,”
NNs by only including in the multi-model mean results for
the years in which a NN reproduces its native model’s OH
field with an r2 value greater than or equal to 0.95. For four
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Figure 8. Same as Fig. 7 but the average across all eight models,
except filtered to remove NN results for individual months and years
during which NN performance is poor, as detailed in the text.

NNs (one per month) created for each of eight CCMI mod-
els, across 36 years, the potential application of the NNs to
1152 calculations (4×8×36) is reduced to 696 calculations
using this test. Results from this point forward are subject to
this quality check and were found to be insensitive to the r2

threshold imposed. This insensitivity is demonstrated by al-
ternate versions of the figures to come, placed in the Supple-
ment, generated using all NNs rather than the quality-filtered
NNs.

Figure 8 shows the multi-model mean attribution of varia-
tions in τCH4 . Many of the same features identified in Fig. 7
also emerge here: clear definition of strong ENSO years in
the CO response, apparent Mount Pinatubo effects in the
JO1D response, and a general downward trend in τCH4 due
to O3 are all observed. Also, as might be expected from the
intermodel comparison results discussed in the prior section,
JO1D, O3, NOx , H2O, and CO account for many of the
strongest OH variations over time (Fig. 7) as well as between
models (Fig. 5). Figure S24 shows the analogue of Fig. 8,
without the quality filter applied to the NNs described above.
That is, all NN results from Fig. 7 are included, except the
spurious cases of EMAC CHNORM

4 and MOCAGE O3 COL.

4.3.2 Trends and interannual variability in the τCH4
time series

We also perform linear fits to each response time series in
Fig. 8. The resulting trends in τCH4 are shown in Fig. 9a. The
interannual variability of τCH4 is also calculated as the stan-
dard deviation of the detrended time series, shown in Fig. 9b,
though it is relevant to note that CTMs have historically
not captured the full interannual variability exhibited by ob-
served OH proxies (Holmes et al., 2013). Figure S25 shows
the equivalent of Fig. 9, without application of the NN qual-
ity filter described above. Negative trends in τCH4 due to O3,
H2O, JO1D, and NOx stand out as largest in magnitude. The
sum of all factors shown in Fig. 9a is−2.3±0.4 % decade−1,
which is comparable to the mean downward trend in τCH4

seen in Fig. 6, −1.8 % decade−1. Time series of the model
input variable fields show corresponding trends, with param-

Figure 9. Multi-model mean linear trend (a) and interannual vari-
ability (b) in τCH4 attributed to each variable examined through the
NN method.

eters that serve as source terms of OH increasing over time
(Figs. S9–S12). Tropospheric ozone and NOx show clear up-
ward trends over time, while H2O and JO1D show upward
trends with more variability, which is also conveyed by the
error bars in Fig. 9a. It is interesting to note that H2O plays
a stronger role in the overall temporal trend of τCH4 , as com-
pared to its role in explaining intermodel differences. This
is likely due to the fact that temperatures were constrained
in the specified dynamics simulations, which in turn should
determine the water vapour calculated within the models.
The interannual variability attributed to CO in Fig. 9b is
also consistent with the large year-to-year swings in tropical
lower tropospheric CO mixing ratios shown in Fig. S8. While
Fig. 9a suggests that CO exhibits very little overall trend be-
tween 1980 and 2015, we note there is a discernible increase
in CO prior to ∼ 1998 in Fig. S8 followed by a steady de-
cline thereafter. This is consistent with remote site measure-
ments that show significant negative trends in CO since the
late 1990s (Zeng et al., 2012).

Finally, the attributed trends in τCH4 from the CCMI mod-
els (Fig. 9a) are compared in Fig. 10 to trends in tropo-
spheric mean OH concentration (“[OH]TROP”) from a pre-
vious observation-based analysis (Nicely et al., 2018). In
that work, TOMS/OMI/SBUV observations of total column
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Figure 10. Comparison of the attributed trends in τCH4 found in
this work according to the REF-C1SD simulations performed for
CCMI (y axis) to the attributed trends in tropospheric mean OH
(“[OH]TROP”) found based on observations in Nicely et al. (2018).
The grey dashed line indicates the −1 : 1 line, as values should be
anti-correlated. The τCH4 trend numbers from this work for NOx
combine the NOx total abundance and partitioning (NO/NOx ) val-
ues from Fig. 9, and for the O3 column combine the J (O1D) and
O3 column values, as both effects are encompassed in the determi-
nation of [OH]TROP.

ozone were used to infer radiative effects on the OH bur-
den, while water vapour from the AIRS instrument, methane
from surface observations, NOx from a global model simula-
tion constrained to realistic emissions, and temperature from
the MERRA-2 reanalysis were analysed to calculate chemi-
cal impacts on [OH]TROP. In Nicely et al. (2018), the trend in
[OH]TROP due to NOx encompassed the effects of both the
total abundance and the partitioning of NOx , while the O3
COL factor encompassed all radiative effects on OH. Thus,
to perform a “like-for-like” comparison, the τCH4 trends due
to NOx and NO : NOx are combined, as are the trends due
to O3 COL and JO1D shown in Fig. 9a. Error bars shown
in Fig. 10 represent the 1σ uncertainty in the slope of the
linear fit and, in the case of combined trends, are found by
summing in quadrature the individual uncertainties. Because
τCH4 varies with the inverse of OH concentration, note that
the x axis of Fig. 10 is inverted and a −1 : 1 line is shown in
grey.

The trends in τCH4 from this analysis and in [OH]TROP

from Nicely et al. (2018) are in reasonably good agree-
ment for H2O, NOx , O3 COL, and temperature. In particu-
lar, the two trends due to H2O agree within the uncertainties,
with τCH4 decreasing by∼ 0.5 % decade−1 and [OH]TROP in-
creasing at almost the same rate. The impacts of NOx and O3
COL are found to increase OH concentrations in both studies,
though the impacts on τCH4 from the CCMI models are found
to be larger in magnitude than the observational estimate.
The small impact of temperature, tending to lessen the OH
burden, is also in close agreement between the two studies,
with the CCMI models again showing a slightly stronger re-

sponse. The role of NOx in driving∼ 0.3 % decade−1 decline
in τCH4 is roughly consistent as well. Only the effect of ozone
column falls relatively far from the −1 : 1 line, with analysis
of the CCMI models suggesting a stronger decrease in τCH4

between 1980 and 2015, albeit with large uncertainties. This
may result from inaccurate representations of stratospheric
ozone in the CCMI models, mischaracterization of the im-
pacts on UV photolysis in the troposphere, or a combination
of both. Overall, the results depicted in Fig. 10 show rela-
tively robust findings regarding the responses of [OH]TROP

and τCH4 to the factors examined through these two indepen-
dent studies.

Because the methane used as input for the CCMI NNs was
normalized, as discussed above, the trend in τCH4 found in
this analysis due to CHNORM

4 did not represent a methane
feedback factor in the traditional sense. As such, it is not
comparable to the trend in [OH]TROP due to methane found
by Nicely et al. (2018) and so was not included in Fig. 10.
However, even in the event that one were to retrain new NNs
using absolute values of methane and sampling across all
years to generate the training dataset, we would question the
physical meaning of the resulting trends. With the current ne-
cessity of providing boundary conditions for surface methane
rather than fluxes in models, our ability to realistically simu-
late methane is hampered. We encourage the further exami-
nation of the response of OH to methane on the global scale,
which is likely a large influencer of tropospheric OH abun-
dance, as indicated in Nicely et al. (2018) and Holmes et
al. (2013).

5 Conclusions

We perform a neural network analysis of the monthly mean
output from historical simulations of 10 models that partic-
ipated in CCMI for the purposes of understanding OH and
τCH4 differences and temporal trends. NNs are trained to re-
produce OH mixing ratios for a given model using 3-D fields
of 12 OH precursor and sink parameters. Performing swaps
of the NN inputs between models produces a quantitative
estimate of the difference in τCH4 that can be attributed to
variations in the substituted variable. Among the 10 models
that we examine, on average, variations in JO1D, local O3,
NOx , and chemical mechanisms account for the largest dif-
ferences in τCH4 . Model diversity in representations of H2O,
CO, the partitioning of NOx , and HCHO is responsible for
moderate OH differences, while isoprene, CHNORM

4 , JNO2,
overhead ozone column, and temperature account for little
to no variation in OH. However, the relative importance of a
particular variable is highly model dependent, so any effort
to improve the representation of OH within a given model
should be guided by that particular model’s results.

We also analyse time series of τCH4 using year 2000
NNs generated for the first half of the study. All mod-
els exhibit a downward trend in τCH4 between 1980 and
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2015, varying from −0.54 to −2.97 % decade−1 (average
of −1.83 % decade−1). Swaps of NN inputs are conducted
between years rather than between models, so attributions
of the factors influencing trends in τCH4 are found for each
model and then combined into a multi-model mean result.
This analysis indicates that the largest contributors to the de-
creasing trend in τCH4 are O3, JO1D, NOx , and H2O, while
CO also imparts a large degree of interannual variability.
Features due to strong ENSO events and associated biomass
burning as well as the eruption of Mount Pinatubo are dis-
cernible in the time series of attributed variations in τCH4 . In
particular, the species CO, H2O, and O3 instigate prominent
responses during strong El Niño years. Finally, the attributed
trends in τCH4 from the NN analysis of CCMI model out-
put are compared to trends in tropospheric mean OH con-
centration found previously in the observation-based study
of Nicely et al. (2018). While the strong response of τCH4 to
increasing H2O over time appears to be a robust result, dis-
agreement on the methane feedback on OH between the two
studies highlights limitations in the approaches of both, in
addition to more systemic issues in the community’s ability
to model methane.

The NN and machine learning methods in general provide
a valuable tool for performing insightful model intercompar-
isons of complex systems in a computationally efficient man-
ner. These approaches, however, must be undertaken with
care to avoid erroneous results and recognition of their lim-
itations. At present, we have devised a method to identify
the drivers of OH variations, whether between models or be-
tween years, at coarse temporal resolution. Much future work
is needed, though; observations must be incorporated to in-
troduce a ground truth element to this analysis in a manner
that either adjusts for or avoids disconnects between coarse
versus local/instantaneous spatiotemporal scales and appro-
priately accounts for measurement uncertainty; an analysis
of model output with much higher temporal frequency is
needed to identify exactly where model differences in chem-
ical mechanisms lie; and subsequent studies of why the vari-
ous OH precursor and sink fields differ are required to make
this analysis of greatest utility for improving model represen-
tations of τCH4 . While these challenges are significant, they
are not insurmountable, especially as machine learning and
other advanced statistical analysis techniques continue to be
developed and honed.

Data availability. All output from most of the models that par-
ticipated in CCMI is available at the Centre for Environmental
Data Analysis (CEDA), the Natural Environment Research Coun-
cil’s Data Repository for Atmospheric Science and Earth Observa-
tion, at http://data.ceda.ac.uk/badc/wcrp-ccmi/data/CCMI-1/output
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CCMI is available for download at http://www.earthsystemgrid.
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