Research article 04 Nov 2020
Research article | 04 Nov 2020
Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3
Junichi Kurokawa and Toshimasa Ohara
Related authors
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1179, https://doi.org/10.5194/acp-2020-1179, 2020
Revised manuscript under review for ACP
Short summary
Short summary
This study presents the detailed analysis of acid deposition over Southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observation are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Junichi Kurokawa, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 20, 2667–2693, https://doi.org/10.5194/acp-20-2667-2020, https://doi.org/10.5194/acp-20-2667-2020, 2020
Short summary
Short summary
This study gives an overview of acid deposition from the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Wet deposition simulated by a total of nine models is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The total deposition maps comparing to emissions over Asia are presented. To seek a way to improve the model performance, ensemble approaches and the precipitation-adjusted method are discussed.
Zhining Tao, Mian Chin, Meng Gao, Tom Kucsera, Dongchul Kim, Huisheng Bian, Jun-ichi Kurokawa, Yuesi Wang, Zirui Liu, Gregory R. Carmichael, Zifa Wang, and Hajime Akimoto
Atmos. Chem. Phys., 20, 2319–2339, https://doi.org/10.5194/acp-20-2319-2020, https://doi.org/10.5194/acp-20-2319-2020, 2020
Short summary
Short summary
One goal of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III is to identify strengths and weaknesses of current air quality models to provide insights into reducing uncertainties. This study identified that a 15 km grid would be the optimal horizontal resolution in terms of performance and resource usage to capture average and extreme air quality over East Asia and is thus suggested for use in future MICS-Asia modeling activities if the investigation domain remains the same.
Lei Chen, Yi Gao, Meigen Zhang, Joshua S. Fu, Jia Zhu, Hong Liao, Jialin Li, Kan Huang, Baozhu Ge, Xuemei Wang, Yun Fat Lam, Chuan-Yao Lin, Syuichi Itahashi, Tatsuya Nagashima, Mizuo Kajino, Kazuyo Yamaji, Zifa Wang, and Jun-ichi Kurokawa
Atmos. Chem. Phys., 19, 11911–11937, https://doi.org/10.5194/acp-19-11911-2019, https://doi.org/10.5194/acp-19-11911-2019, 2019
Short summary
Short summary
Simulated aerosol concentrations from 14 CTMs within the framework of MICS-Asia III are detailedly evaluated with an extensive set of measurements in East Asia. Similarities and differences among model performances are also analyzed. Although more considerable capacities for reproducing the aerosol concentrations and their variations are shown in current CTMs than those in MICS-Asia II, more efforts are needed to reduce diversities of simulated aerosol concentrations among air quality models.
Rachel M. Hoesly, Steven J. Smith, Leyang Feng, Zbigniew Klimont, Greet Janssens-Maenhout, Tyler Pitkanen, Jonathan J. Seibert, Linh Vu, Robert J. Andres, Ryan M. Bolt, Tami C. Bond, Laura Dawidowski, Nazar Kholod, June-ichi Kurokawa, Meng Li, Liang Liu, Zifeng Lu, Maria Cecilia P. Moura, Patrick R. O'Rourke, and Qiang Zhang
Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, https://doi.org/10.5194/gmd-11-369-2018, 2018
Short summary
Short summary
Historical emission trends are key inputs to Earth systems and atmospheric chemistry models. We present a new data set of historical (1750–2014) anthropogenic gases (CO, CH4, NH3, NOx, SO2, NMVOCs, BC, OC, and CO2) developed with the Community Emissions Data System (CEDS). This improves on existing inventories as it uses consistent methods and data across emissions species, has annual resolution for a longer and more recent time series, and is designed to be transparent and reproducible.
Jieying Ding, Kazuyuki Miyazaki, Ronald Johannes van der A, Bas Mijling, Jun-ichi Kurokawa, SeogYeon Cho, Greet Janssens-Maenhout, Qiang Zhang, Fei Liu, and Pieternel Felicitas Levelt
Atmos. Chem. Phys., 17, 10125–10141, https://doi.org/10.5194/acp-17-10125-2017, https://doi.org/10.5194/acp-17-10125-2017, 2017
Short summary
Short summary
To evaluate the quality of the satellite-derived NOx emissions, we compare nine emission inventories of nitrogen oxides including four satellite-derived NOx inventories and bottom-up inventories for East Asia. The temporal and spatial distribution of NOx emissions over East Asia are evaluated. We analyse the differences in satellite-derived emissions from two different inversion methods. The paper ends with recommendations for future improvements of emission estimates.
Tatsuya Nagashima, Kengo Sudo, Hajime Akimoto, Junichi Kurokawa, and Toshimasa Ohara
Atmos. Chem. Phys., 17, 8231–8246, https://doi.org/10.5194/acp-17-8231-2017, https://doi.org/10.5194/acp-17-8231-2017, 2017
Short summary
Short summary
We showed the large contribution of different source regions in Asia to the recent increasing trend in surface ozone over Japan by using a global chemical transport model. China accounted for the largest part of the increasing trend, not only through the domestic ozone production (36 %) but also the ozone production in the adjacent countries due to the ozone precursors emitted in China (10 %). Other factors such as temporal change in climate and methane concentration were also investigated.
Eri Saikawa, Hankyul Kim, Min Zhong, Alexander Avramov, Yu Zhao, Greet Janssens-Maenhout, Jun-ichi Kurokawa, Zbigniew Klimont, Fabian Wagner, Vaishali Naik, Larry W. Horowitz, and Qiang Zhang
Atmos. Chem. Phys., 17, 6393–6421, https://doi.org/10.5194/acp-17-6393-2017, https://doi.org/10.5194/acp-17-6393-2017, 2017
Short summary
Short summary
We analyze differences in existing air pollutant emission estimates to better understand the magnitude of emissions as well as the source regions and sectors of air pollution in China. We find large disagreements among the inventories, and we show that these differences have a significant impact on regional air quality simulations. Better understanding of air pollutant emissions at more disaggregated levels is essential for air pollution mitigation in China.
Meng Li, Qiang Zhang, Jun-ichi Kurokawa, Jung-Hun Woo, Kebin He, Zifeng Lu, Toshimasa Ohara, Yu Song, David G. Streets, Gregory R. Carmichael, Yafang Cheng, Chaopeng Hong, Hong Huo, Xujia Jiang, Sicong Kang, Fei Liu, Hang Su, and Bo Zheng
Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, https://doi.org/10.5194/acp-17-935-2017, 2017
Short summary
Short summary
An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) projects by a mosaic of up-to-date regional emission inventories. The total Asian emissions in 2010 are estimated as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.5 Tg CO, 67.0 Tg NMVOC, 28.7 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2.
G. Janssens-Maenhout, M. Crippa, D. Guizzardi, F. Dentener, M. Muntean, G. Pouliot, T. Keating, Q. Zhang, J. Kurokawa, R. Wankmüller, H. Denier van der Gon, J. J. P. Kuenen, Z. Klimont, G. Frost, S. Darras, B. Koffi, and M. Li
Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, https://doi.org/10.5194/acp-15-11411-2015, 2015
Short summary
Short summary
This paper provides monthly emission grid maps at 0.1deg x 0.1deg resolution with global coverage for air pollutants and aerosols anthropogenic emissions in 2008 and 2010.
Countries are consistently inter-compared with sector-specific implied emission factors, per capita emissions and emissions per unit of GDP.
The emission grid maps compose the reference emissions data set for the community modelling hemispheric transport of air pollution (HTAP).
S. Itahashi, I. Uno, H. Irie, J.-I. Kurokawa, and T. Ohara
Atmos. Chem. Phys., 14, 3623–3635, https://doi.org/10.5194/acp-14-3623-2014, https://doi.org/10.5194/acp-14-3623-2014, 2014
J. Kurokawa, T. Ohara, T. Morikawa, S. Hanayama, G. Janssens-Maenhout, T. Fukui, K. Kawashima, and H. Akimoto
Atmos. Chem. Phys., 13, 11019–11058, https://doi.org/10.5194/acp-13-11019-2013, https://doi.org/10.5194/acp-13-11019-2013, 2013
T. Stavrakou, J.-F. Müller, K. F. Boersma, R. J. van der A, J. Kurokawa, T. Ohara, and Q. Zhang
Atmos. Chem. Phys., 13, 9057–9082, https://doi.org/10.5194/acp-13-9057-2013, https://doi.org/10.5194/acp-13-9057-2013, 2013
H. Irie, K. Yamaji, K. Ikeda, I. Uno, S. Itahashi, T. Ohara, and J. Kurokawa
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-14037-2013, https://doi.org/10.5194/acpd-13-14037-2013, 2013
Preprint withdrawn
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1179, https://doi.org/10.5194/acp-2020-1179, 2020
Revised manuscript under review for ACP
Short summary
Short summary
This study presents the detailed analysis of acid deposition over Southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observation are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Daisuke Goto, Yu Morino, Toshimasa Ohara, Tsuyoshi Thomas Sekiyama, Junya Uchida, and Teruyuki Nakajima
Atmos. Chem. Phys., 20, 3589–3607, https://doi.org/10.5194/acp-20-3589-2020, https://doi.org/10.5194/acp-20-3589-2020, 2020
Short summary
Short summary
To obtain reliable distribution of atmospheric Cs-137 emitted from the Fukushima accident, we proposed a multi-model ensemble (MME) method using observations. We found the MME-estimated Cs-137 concentrations using all available observations had lower bias, lower uncertainty, higher correlation and higher precision against the observations compared to single-model results. It can be applied not only to the Cs-137 distribution but also any atmospheric materials such as PM2.5 distribution.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Junichi Kurokawa, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 20, 2667–2693, https://doi.org/10.5194/acp-20-2667-2020, https://doi.org/10.5194/acp-20-2667-2020, 2020
Short summary
Short summary
This study gives an overview of acid deposition from the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Wet deposition simulated by a total of nine models is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The total deposition maps comparing to emissions over Asia are presented. To seek a way to improve the model performance, ensemble approaches and the precipitation-adjusted method are discussed.
Zhining Tao, Mian Chin, Meng Gao, Tom Kucsera, Dongchul Kim, Huisheng Bian, Jun-ichi Kurokawa, Yuesi Wang, Zirui Liu, Gregory R. Carmichael, Zifa Wang, and Hajime Akimoto
Atmos. Chem. Phys., 20, 2319–2339, https://doi.org/10.5194/acp-20-2319-2020, https://doi.org/10.5194/acp-20-2319-2020, 2020
Short summary
Short summary
One goal of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III is to identify strengths and weaknesses of current air quality models to provide insights into reducing uncertainties. This study identified that a 15 km grid would be the optimal horizontal resolution in terms of performance and resource usage to capture average and extreme air quality over East Asia and is thus suggested for use in future MICS-Asia modeling activities if the investigation domain remains the same.
Lei Chen, Yi Gao, Meigen Zhang, Joshua S. Fu, Jia Zhu, Hong Liao, Jialin Li, Kan Huang, Baozhu Ge, Xuemei Wang, Yun Fat Lam, Chuan-Yao Lin, Syuichi Itahashi, Tatsuya Nagashima, Mizuo Kajino, Kazuyo Yamaji, Zifa Wang, and Jun-ichi Kurokawa
Atmos. Chem. Phys., 19, 11911–11937, https://doi.org/10.5194/acp-19-11911-2019, https://doi.org/10.5194/acp-19-11911-2019, 2019
Short summary
Short summary
Simulated aerosol concentrations from 14 CTMs within the framework of MICS-Asia III are detailedly evaluated with an extensive set of measurements in East Asia. Similarities and differences among model performances are also analyzed. Although more considerable capacities for reproducing the aerosol concentrations and their variations are shown in current CTMs than those in MICS-Asia II, more efforts are needed to reduce diversities of simulated aerosol concentrations among air quality models.
Rachel M. Hoesly, Steven J. Smith, Leyang Feng, Zbigniew Klimont, Greet Janssens-Maenhout, Tyler Pitkanen, Jonathan J. Seibert, Linh Vu, Robert J. Andres, Ryan M. Bolt, Tami C. Bond, Laura Dawidowski, Nazar Kholod, June-ichi Kurokawa, Meng Li, Liang Liu, Zifeng Lu, Maria Cecilia P. Moura, Patrick R. O'Rourke, and Qiang Zhang
Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, https://doi.org/10.5194/gmd-11-369-2018, 2018
Short summary
Short summary
Historical emission trends are key inputs to Earth systems and atmospheric chemistry models. We present a new data set of historical (1750–2014) anthropogenic gases (CO, CH4, NH3, NOx, SO2, NMVOCs, BC, OC, and CO2) developed with the Community Emissions Data System (CEDS). This improves on existing inventories as it uses consistent methods and data across emissions species, has annual resolution for a longer and more recent time series, and is designed to be transparent and reproducible.
Jieying Ding, Kazuyuki Miyazaki, Ronald Johannes van der A, Bas Mijling, Jun-ichi Kurokawa, SeogYeon Cho, Greet Janssens-Maenhout, Qiang Zhang, Fei Liu, and Pieternel Felicitas Levelt
Atmos. Chem. Phys., 17, 10125–10141, https://doi.org/10.5194/acp-17-10125-2017, https://doi.org/10.5194/acp-17-10125-2017, 2017
Short summary
Short summary
To evaluate the quality of the satellite-derived NOx emissions, we compare nine emission inventories of nitrogen oxides including four satellite-derived NOx inventories and bottom-up inventories for East Asia. The temporal and spatial distribution of NOx emissions over East Asia are evaluated. We analyse the differences in satellite-derived emissions from two different inversion methods. The paper ends with recommendations for future improvements of emission estimates.
Tatsuya Nagashima, Kengo Sudo, Hajime Akimoto, Junichi Kurokawa, and Toshimasa Ohara
Atmos. Chem. Phys., 17, 8231–8246, https://doi.org/10.5194/acp-17-8231-2017, https://doi.org/10.5194/acp-17-8231-2017, 2017
Short summary
Short summary
We showed the large contribution of different source regions in Asia to the recent increasing trend in surface ozone over Japan by using a global chemical transport model. China accounted for the largest part of the increasing trend, not only through the domestic ozone production (36 %) but also the ozone production in the adjacent countries due to the ozone precursors emitted in China (10 %). Other factors such as temporal change in climate and methane concentration were also investigated.
Eri Saikawa, Hankyul Kim, Min Zhong, Alexander Avramov, Yu Zhao, Greet Janssens-Maenhout, Jun-ichi Kurokawa, Zbigniew Klimont, Fabian Wagner, Vaishali Naik, Larry W. Horowitz, and Qiang Zhang
Atmos. Chem. Phys., 17, 6393–6421, https://doi.org/10.5194/acp-17-6393-2017, https://doi.org/10.5194/acp-17-6393-2017, 2017
Short summary
Short summary
We analyze differences in existing air pollutant emission estimates to better understand the magnitude of emissions as well as the source regions and sectors of air pollution in China. We find large disagreements among the inventories, and we show that these differences have a significant impact on regional air quality simulations. Better understanding of air pollutant emissions at more disaggregated levels is essential for air pollution mitigation in China.
Meng Li, Qiang Zhang, Jun-ichi Kurokawa, Jung-Hun Woo, Kebin He, Zifeng Lu, Toshimasa Ohara, Yu Song, David G. Streets, Gregory R. Carmichael, Yafang Cheng, Chaopeng Hong, Hong Huo, Xujia Jiang, Sicong Kang, Fei Liu, Hang Su, and Bo Zheng
Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, https://doi.org/10.5194/acp-17-935-2017, 2017
Short summary
Short summary
An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) projects by a mosaic of up-to-date regional emission inventories. The total Asian emissions in 2010 are estimated as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.5 Tg CO, 67.0 Tg NMVOC, 28.7 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2.
H. Higashi, Y. Morino, N. Furuichi, and T. Ohara
Biogeosciences, 12, 7107–7128, https://doi.org/10.5194/bg-12-7107-2015, https://doi.org/10.5194/bg-12-7107-2015, 2015
Short summary
Short summary
We elucidated ocean dynamic processes causing spatially-heterogeneous sedimentary radiocaesium-137 distribution in and around the shelf off Fukushima and adjacent prefectures on the basis of numerical simulation. Our result suggests that accumulation of sedimentary radiocaesium-137 in a swath just offshore of shelf break results from spatiotemporal variation of bottom friction occurred via a periodic spring tide about every 2 weeks and via occasional strong wind.
G. Janssens-Maenhout, M. Crippa, D. Guizzardi, F. Dentener, M. Muntean, G. Pouliot, T. Keating, Q. Zhang, J. Kurokawa, R. Wankmüller, H. Denier van der Gon, J. J. P. Kuenen, Z. Klimont, G. Frost, S. Darras, B. Koffi, and M. Li
Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, https://doi.org/10.5194/acp-15-11411-2015, 2015
Short summary
Short summary
This paper provides monthly emission grid maps at 0.1deg x 0.1deg resolution with global coverage for air pollutants and aerosols anthropogenic emissions in 2008 and 2010.
Countries are consistently inter-compared with sector-specific implied emission factors, per capita emissions and emissions per unit of GDP.
The emission grid maps compose the reference emissions data set for the community modelling hemispheric transport of air pollution (HTAP).
D. Goto, T. Dai, M. Satoh, H. Tomita, J. Uchida, S. Misawa, T. Inoue, H. Tsuruta, K. Ueda, C. F. S. Ng, A. Takami, N. Sugimoto, A. Shimizu, T. Ohara, and T. Nakajima
Geosci. Model Dev., 8, 235–259, https://doi.org/10.5194/gmd-8-235-2015, https://doi.org/10.5194/gmd-8-235-2015, 2015
Short summary
Short summary
An aerosol-coupled global non-hydrostatic model with a stretched-grid system has been developed to simulate aerosols on a region scale of 10 km grids. The regional simulation does require either a nesting technique or lateral boundary conditions, as opposed to general regional models. It generally reproduces monthly mean distributions of the observed sulfate and SO2 over East Asia as well as the diurnal and synoptic variations of the observed ones around the main target region, Tokyo/Japan.
S. Itahashi, I. Uno, H. Irie, J.-I. Kurokawa, and T. Ohara
Atmos. Chem. Phys., 14, 3623–3635, https://doi.org/10.5194/acp-14-3623-2014, https://doi.org/10.5194/acp-14-3623-2014, 2014
J. Kurokawa, T. Ohara, T. Morikawa, S. Hanayama, G. Janssens-Maenhout, T. Fukui, K. Kawashima, and H. Akimoto
Atmos. Chem. Phys., 13, 11019–11058, https://doi.org/10.5194/acp-13-11019-2013, https://doi.org/10.5194/acp-13-11019-2013, 2013
T. Stavrakou, J.-F. Müller, K. F. Boersma, R. J. van der A, J. Kurokawa, T. Ohara, and Q. Zhang
Atmos. Chem. Phys., 13, 9057–9082, https://doi.org/10.5194/acp-13-9057-2013, https://doi.org/10.5194/acp-13-9057-2013, 2013
H. Irie, K. Yamaji, K. Ikeda, I. Uno, S. Itahashi, T. Ohara, and J. Kurokawa
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-14037-2013, https://doi.org/10.5194/acpd-13-14037-2013, 2013
Preprint withdrawn
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Reactive organic carbon emissions from volatile chemical products
A three-dimensional-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity
Technical note: On comparing greenhouse gas emission metrics
Late-spring and summertime tropospheric ozone and NO2 in western Siberia and the Russian Arctic: regional model evaluation and sensitivities
10-year satellite-constrained fluxes of ammonia improve performance of chemistry transport models
Revealing the sulfur dioxide emission reductions in China by assimilating surface observations in WRF-Chem
Tropospheric ozone in CMIP6 simulations
Identifying forecast uncertainties for biogenic gases in the Po Valley related to model configuration in EURAD-IM during PEGASOS 2012
Impact of reduced anthropogenic emissions during COVID-19 on air quality in India
A comparison of long-term trends in observations and emission inventories of NOx
Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations
Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone
The impact of inhomogeneous emissions and topography on ozone photochemistry in the vicinity of Hong Kong Island
Inverse modelling of carbonyl sulfide: implementation, evaluation and implications for the global budget
Influence of aromatics on tropospheric gas-phase composition
Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China
Photochemical environment over Southeast Asia primed for hazardous ozone levels with influx of nitrogen oxides from seasonal biomass burning
Atmospheric-methane source and sink sensitivity analysis using Gaussian process emulation
Carbon and air pollutant emissions from China's cement industry 1990–2015: trends, evolution of technologies, and drivers
Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1
Technical note: A high-resolution inverse modelling technique for estimating surface CO2 fluxes based on the NIES-TM–FLEXPART coupled transport model and its adjoint
Improvement of the satellite-derived NOx emissions on air quality modeling and its effect on ozone and secondary inorganic aerosol formation in the Yangtze River Delta, China
Aircraft-based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions
Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns
Background conditions for an urban greenhouse gas network in the Washington, D.C. and Baltimore metropolitan region
Impact of northern hemisphere mid-latitude anthropogenic sulfur dioxide emissions on local and remote tropospheric oxidants
Rapid increase in summer surface ozone over the North China Plain during 2013–2019: a side effect of particulate matter reduction control?
Pan-Arctic surface ozone: modelling vs. measurements
Influence of aerosol copper on HO2 uptake: a novel parameterized equation
Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030
Spatial and temporal variability of the hydroxyl radical: Understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers
Modelling the Impacts of Iodine Chemistry on the Northern Indian Ocean Marine Boundary Layer
Discrepancies between MICS-Asia III simulation and observation for surface ozone in the marine atmosphere over the northwestern Pacific Asian Rim region
Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ
Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study
Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: A case study in the Yangtze River Delta region, China
3D simulations of tropospheric ozone depletion events using WRF-Chem
Do alternative inventories converge on the spatiotemporal representation of spring ammonia emissions in France?
Impacts of global NOx inversions on NO2 and ozone simulations
Quantifying sources of Brazil's CH4 emissions between 2010 and 2018 from satellite data
On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget
Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP
Estimation of rate coefficients for the reactions of O3 with unsaturated organic compounds for use in automated mechanism construction
Evaluation of the LOTOS-EUROS NO2 simulations using ground-based measurements and S5P/TROPOMI observations over Greece
The impact of weather patterns and related transport processes on aviation's contribution to ozone and methane concentrations from NOx emissions
Northwestward cropland expansion and growing urea-based fertilizer use enhanced NH3 emission loss in the contiguous United States
Impact of structure on the estimation of atmospherically relevant physicochemical parameters
Evaluating China's fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories
Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences
Assessing and improving cloud-height based parameterisations of global lightning flash rate, and their impact on lightning-produced NOx and tropospheric composition
Karl M. Seltzer, Elyse Pennington, Venkatesh Rao, Benjamin N. Murphy, Madeleine Strum, Kristin K. Isaacs, and Havala O. T. Pye
Atmos. Chem. Phys., 21, 5079–5100, https://doi.org/10.5194/acp-21-5079-2021, https://doi.org/10.5194/acp-21-5079-2021, 2021
Short summary
Short summary
Volatile chemical products (VCPs) are an increasingly important source of anthropogenic reactive organic carbon emissions. Here, we develop VCPy, a new framework to model organic emissions from VCPs throughout the United States. At the national-level, VCPy emissions are broadly consistent with the US EPA’s 2017 National Emission Inventory, however county-level and categorical estimates can differ substantially. An observational evaluation indicates high fidelity in the methods employed here.
Stijn Naus, Stephen A. Montzka, Prabir K. Patra, and Maarten C. Krol
Atmos. Chem. Phys., 21, 4809–4824, https://doi.org/10.5194/acp-21-4809-2021, https://doi.org/10.5194/acp-21-4809-2021, 2021
Short summary
Short summary
Following up on previous box model studies, we employ a 3D transport model to estimate variations in the hydroxyl radical (OH) from observations of methyl chloroform (MCF). We derive small interannual OH variations that are consistent with variations in the El Niño–Southern Oscillation. We also find evidence for the release of MCF from oceans in atmospheric gradients of MCF. Both findings highlight the added value of a 3D transport model since box model studies did not identify these effects.
Ian Enting and Nathan Clisby
Atmos. Chem. Phys., 21, 4699–4708, https://doi.org/10.5194/acp-21-4699-2021, https://doi.org/10.5194/acp-21-4699-2021, 2021
Short summary
Short summary
We provide a new framework for comparing short-lived greenhouse gases to long-lived greenhouse gases such as carbon dioxide using methane as an example. This can clarify the differences between various proposals that have been introduced in order to overcome the use of global warming potentials as a measure of greenhouse gas equivalence.
Thomas Thorp, Stephen R. Arnold, Richard J. Pope, Dominick V. Spracklen, Luke Conibear, Christoph Knote, Mikhail Arshinov, Boris Belan, Eija Asmi, Tuomas Laurila, Andrei I. Skorokhod, Tuomo Nieminen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 4677–4697, https://doi.org/10.5194/acp-21-4677-2021, https://doi.org/10.5194/acp-21-4677-2021, 2021
Short summary
Short summary
We compare modelled near-surface pollutants with surface and satellite observations to better understand the controls on the regional concentrations of pollution in western Siberia for late spring and summer in 2011. We find two commonly used emission inventories underestimate human emissions when compared to observations. Transport emissions are the main source of pollutants within the region during this period, whilst fire emissions peak during June and are only significant south of 60° N.
Nikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Anne Cozic, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Mark W. Shephard, Karen E. Cady-Pereira, and Didier Hauglustaine
Atmos. Chem. Phys., 21, 4431–4451, https://doi.org/10.5194/acp-21-4431-2021, https://doi.org/10.5194/acp-21-4431-2021, 2021
Short summary
Short summary
Ammonia, a substance that has played a key role in sustaining life, has been increasing in the atmosphere, affecting climate and humans. Understanding the reasons for this increase is important for the beneficial use of ammonia. The evolution of satellite products gives us the opportunity to calculate ammonia emissions easier. We calculated global ammonia emissions over the last 10 years, incorporated them into a chemistry model and recorded notable improvement in reproducing observations.
Tie Dai, Yueming Cheng, Daisuke Goto, Yingruo Li, Xiao Tang, Guangyu Shi, and Teruyuki Nakajima
Atmos. Chem. Phys., 21, 4357–4379, https://doi.org/10.5194/acp-21-4357-2021, https://doi.org/10.5194/acp-21-4357-2021, 2021
Short summary
Short summary
The anthropogenic emission of sulfur dioxide (SO2) over China has significantly declined as a consequence of the clean air actions. We have developed a new emission inversion system to dynamically update the SO2 emission grid by grid over China by assimilating ground-based SO2 observations. The inverted SO2 emission over China in November 2016 on average had declined by 49.4 % since 2010, which is well in agreement with the bottom-up estimation of 48.0 %.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Annika Vogel and Hendrik Elbern
Atmos. Chem. Phys., 21, 4039–4057, https://doi.org/10.5194/acp-21-4039-2021, https://doi.org/10.5194/acp-21-4039-2021, 2021
Short summary
Short summary
Forecasts of biogenic trace gases highly depend on the model setup and input fields. This study identifies sources of related forecast uncertainties for biogenic gases. Exceptionally high differences in both biogenic emissions and pollutant transport in the Po Valley are identified to be caused by the representation of the land surface and boundary layer dynamics. Consequently, changes in the model configuration are shown to induce significantly different local concentrations of biogenic gases.
Mengyuan Zhang, Arpit Katiyar, Shengqiang Zhu, Juanyong Shen, Men Xia, Jinlong Ma, Sri Harsha Kota, Peng Wang, and Hongliang Zhang
Atmos. Chem. Phys., 21, 4025–4037, https://doi.org/10.5194/acp-21-4025-2021, https://doi.org/10.5194/acp-21-4025-2021, 2021
Short summary
Short summary
We studied changes in air quality in India induced by the COVID-19 lockdown through both surface observations and the CMAQ model. Our results show that emission reductions improved the air quality across India during the lockdown. On average, the levels of PM2.5 and O3 decreased by 28 % and 15 %, indicating positive effects of lockdown measures. We suggest that more stringent and localized emission control strategies should be implemented in India to mitigate air pollutions.
Elena Macdonald, Noelia Otero, and Tim Butler
Atmos. Chem. Phys., 21, 4007–4023, https://doi.org/10.5194/acp-21-4007-2021, https://doi.org/10.5194/acp-21-4007-2021, 2021
Short summary
Short summary
NO2 limit values are still regularly exceeded in many European cities despite decreasing emissions. Measurements of NOx concentrations from stations across Europe were systematically analysed to assess long-term changes observed in urban areas. We compared trends in concentration increments to trends in total and traffic emissions to find potential discrepancies. The results can help in evaluating inaccuracies in emission inventories and in improving spatial imbalances in data availability.
Yuzhong Zhang, Daniel J. Jacob, Xiao Lu, Joannes D. Maasakkers, Tia R. Scarpelli, Jian-Xiong Sheng, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Jinfeng Chang, A. Anthony Bloom, Shuang Ma, John Worden, Robert J. Parker, and Hartmut Boesch
Atmos. Chem. Phys., 21, 3643–3666, https://doi.org/10.5194/acp-21-3643-2021, https://doi.org/10.5194/acp-21-3643-2021, 2021
Short summary
Short summary
We use 2010–2018 satellite observations of atmospheric methane to interpret the factors controlling atmospheric methane and its accelerating increase during the period. The 2010–2018 increase in global methane emissions is driven by tropical and boreal wetlands and tropical livestock (South Asia, Africa, Brazil), with an insignificant positive trend in emissions from the fossil fuel sector. The peak methane growth rates in 2014–2015 are also contributed by low OH and high fire emissions.
Christoph A. Keller, Mathew J. Evans, K. Emma Knowland, Christa A. Hasenkopf, Sruti Modekurty, Robert A. Lucchesi, Tomohiro Oda, Bruno B. Franca, Felipe C. Mandarino, M. Valeria Díaz Suárez, Robert G. Ryan, Luke H. Fakes, and Steven Pawson
Atmos. Chem. Phys., 21, 3555–3592, https://doi.org/10.5194/acp-21-3555-2021, https://doi.org/10.5194/acp-21-3555-2021, 2021
Short summary
Short summary
This study combines surface observations and model simulations to quantify the impact of COVID-19 restrictions on air quality across the world. The presented methodology removes the confounding impacts of meteorology on air pollution. Our results indicate that surface concentrations of nitrogen dioxide, an important air pollutant emitted during the combustion of fossil fuels, declined by up to 60 % following the implementation of COVID-19 containment measures.
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Cathy W. Y. Li, Mary Barth, Tao Wang, and Guy P. Brasseur
Atmos. Chem. Phys., 21, 3531–3553, https://doi.org/10.5194/acp-21-3531-2021, https://doi.org/10.5194/acp-21-3531-2021, 2021
Short summary
Short summary
Large-eddy simulations (LESs) were performed in the mountainous region of the island of Hong Kong to investigate the degree to which the rates of chemical reactions between two reactive species are reduced due to the segregation of species within the convective boundary layer. We show that the inhomogeneity in emissions plays an important role in the segregation effect. Topography also has a significant influence on the segregation locally.
Jin Ma, Linda M. J. Kooijmans, Ara Cho, Stephen A. Montzka, Norbert Glatthor, John R. Worden, Le Kuai, Elliot L. Atlas, and Maarten C. Krol
Atmos. Chem. Phys., 21, 3507–3529, https://doi.org/10.5194/acp-21-3507-2021, https://doi.org/10.5194/acp-21-3507-2021, 2021
Short summary
Short summary
Carbonyl sulfide is an important trace gas in the atmosphere and useful to estimating gross primary productivity in ecosystems, but its sources and sinks remain highly uncertain. Therefore, we applied inverse model system TM5-4DVAR to better constrain the global budget. Our finding is in line with earlier studies, pointing to missing sources in the tropics and more uptake in high latitudes. We also stress the necessity of more ground-based observations and satellite data assimilation in future.
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
Jingyu An, Yiwei Huang, Cheng Huang, Xin Wang, Rusha Yan, Qian Wang, Hongli Wang, Sheng'ao Jing, Yan Zhang, Yiming Liu, Yuan Chen, Chang Xu, Liping Qiao, Min Zhou, Shuhui Zhu, Qingyao Hu, Jun Lu, and Changhong Chen
Atmos. Chem. Phys., 21, 2003–2025, https://doi.org/10.5194/acp-21-2003-2021, https://doi.org/10.5194/acp-21-2003-2021, 2021
Short summary
Short summary
This study established a 4 km × 4 km anthropogenic emission inventory in the Yangtze River Delta region, China, for 2017 based on locally measured emission factors and source profiles. There are high-intensity NOx and NMVOC species emissions in the eastern areas of the region. Toluene, 1,2,4-trimethylbenzene, m,p-xylene, propylene, ethylene, o-xylene, and OVOCs from industry and mobile sources have the highest comprehensive potentials for ozone and secondary organic aerosol formation.
Margaret R. Marvin, Paul I. Palmer, Barry G. Latter, Richard Siddans, Brian J. Kerridge, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 21, 1917–1935, https://doi.org/10.5194/acp-21-1917-2021, https://doi.org/10.5194/acp-21-1917-2021, 2021
Short summary
Short summary
We use an atmospheric chemistry model in combination with satellite and surface observations to investigate how biomass burning affects tropospheric ozone over Southeast Asia during its fire seasons. We find that nitrogen oxides from biomass burning were responsible for about 30 % of the regional ozone formation potential, and we estimate that ozone from biomass burning caused more than 400 excess premature deaths in Southeast Asia during the peak burning months of March and September 2014.
Angharad C. Stell, Luke M. Western, Tomás Sherwen, and Matthew Rigby
Atmos. Chem. Phys., 21, 1717–1736, https://doi.org/10.5194/acp-21-1717-2021, https://doi.org/10.5194/acp-21-1717-2021, 2021
Short summary
Short summary
Although it is the second-most important greenhouse gas, our understanding of the atmospheric-methane budget is limited. The uncertainty highlights the need for new tools to investigate sources and sinks. Here, we use a Gaussian process emulator to efficiently approximate the response of atmospheric-methane observations to changes in the most uncertain emission or loss processes. With this new method, we rigorously quantify the sensitivity of atmospheric observations to budget uncertainties.
Jun Liu, Dan Tong, Yixuan Zheng, Jing Cheng, Xinying Qin, Qinren Shi, Liu Yan, Yu Lei, and Qiang Zhang
Atmos. Chem. Phys., 21, 1627–1647, https://doi.org/10.5194/acp-21-1627-2021, https://doi.org/10.5194/acp-21-1627-2021, 2021
Short summary
Short summary
In this study, we investigated the decadal changes in carbon dioxide and air pollutant emissions in China's cement industry for the period 1990–2015 based on intensive unit-based information. We found that from 1990 to 2015, accompanied by a 10.3-fold increase in cement production, CO2, SO2, and NOx emissions from China's cement industry increased by 627 %, 56 %, and 659 %, whereas CO, PM2.5, and PM10 emissions decreased by 9 %, 63 %, and 59 %, respectively.
Fiona M. O'Connor, N. Luke Abraham, Mohit Dalvi, Gerd A. Folberth, Paul T. Griffiths, Catherine Hardacre, Ben T. Johnson, Ron Kahana, James Keeble, Byeonghyeon Kim, Olaf Morgenstern, Jane P. Mulcahy, Mark Richardson, Eddy Robertson, Jeongbyn Seo, Sungbo Shim, João C. Teixeira, Steven T. Turnock, Jonny Williams, Andrew J. Wiltshire, Stephanie Woodward, and Guang Zeng
Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, https://doi.org/10.5194/acp-21-1211-2021, 2021
Short summary
Short summary
This paper calculates how changes in emissions and/or concentrations of different atmospheric constituents since the pre-industrial era have altered the Earth's energy budget at the present day using a metric called effective radiative forcing. The impact of land use change is also assessed. We find that individual contributions do not add linearly, and different Earth system interactions can affect the magnitude of the calculated effective radiative forcing.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Yang Yang, Yu Zhao, Lei Zhang, Jie Zhang, Xin Huang, Xuefen Zhao, Yan Zhang, Mengxiao Xi, and Yi Lu
Atmos. Chem. Phys., 21, 1191–1209, https://doi.org/10.5194/acp-21-1191-2021, https://doi.org/10.5194/acp-21-1191-2021, 2021
Short summary
Short summary
We conducted new NOx emission estimation based on the satellite-derived NO2 column constraint and found reduced emissions compared to previous estimates for a developed region in east China. The subsequent improvement in air quality modeling was demonstrated based on available ground observations. With multiple emission reduction cases for various pollutants, we explored the effective control approaches for ozone and inorganic aerosol pollution.
Xueying Yu, Dylan B. Millet, Kelley C. Wells, Daven K. Henze, Hansen Cao, Timothy J. Griffis, Eric A. Kort, Genevieve Plant, Malte J. Deventer, Randall K. Kolka, D. Tyler Roman, Kenneth J. Davis, Ankur R. Desai, Bianca C. Baier, Kathryn McKain, Alan C. Czarnetzki, and A. Anthony Bloom
Atmos. Chem. Phys., 21, 951–971, https://doi.org/10.5194/acp-21-951-2021, https://doi.org/10.5194/acp-21-951-2021, 2021
Short summary
Short summary
Methane concentrations have doubled since 1750. The US Upper Midwest is a key region contributing to such trends, but sources are poorly understood. We collected and analyzed aircraft data to resolve spatial and timing biases in wetland and livestock emission estimates and uncover errors in inventory treatment of manure management. We highlight the importance of intensive agriculture for the regional and US methane budgets and the potential for methane mitigation through improved management.
Marc Guevara, Oriol Jorba, Albert Soret, Hervé Petetin, Dene Bowdalo, Kim Serradell, Carles Tena, Hugo Denier van der Gon, Jeroen Kuenen, Vincent-Henri Peuch, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 21, 773–797, https://doi.org/10.5194/acp-21-773-2021, https://doi.org/10.5194/acp-21-773-2021, 2021
Short summary
Short summary
Most European countries have imposed lockdowns to combat the spread of the COVID-19 pandemic. Such a socioeconomic disruption has resulted in a sudden drop of atmospheric emissions and air pollution levels. This study quantifies the daily reductions in national emissions and associated levels of nitrogen dioxide (NO2) due to the COVID-19 lockdowns in Europe, by making use of multiple open-access measured activity data as well as artificial intelligence and modelling techniques.
Anna Karion, Israel Lopez-Coto, Sharon M. Gourdji, Kimberly Mueller, Subhomoy Ghosh, William Callahan, Michael Stock, Elizabeth DiGangi, Steve Prinzivalli, and James Whetstone
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1256, https://doi.org/10.5194/acp-2020-1256, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Estimating city emissions based on atmospheric observations requires that the portion of observed greenhouse gases that originated in the city be separated from the portion that originated outside the city, also known as the background concentration. Here, we investigate different methods to determine background concentrations for the Washington, DC and Baltimore, MD region and evaluate how well those methods work and the uncertainties they involve.
Daniel M. Westervelt, Arlene M. Fiore, Colleen B. Baublitz, and Gustavo Correa
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1255, https://doi.org/10.5194/acp-2020-1255, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Particulate air pollution in the atmosphere can impact the availability of gas-phase chemical constituents, which can then have feedbacks on gas-phase air pollutants. We use a chemistry-climate computer model to simulate the impact of particulate pollution from three major world regions on gas-phase chemical constituents. We find that surface level ozone air pollution decreases by up to 5 ppbv over China in response to Chinese particulate air pollution, which has implications for policy.
Xiaodan Ma, Jianping Huang, Tianliang Zhao, Cheng Liu, Kaihui Zhao, Jia Xing, and Wei Xiao
Atmos. Chem. Phys., 21, 1–16, https://doi.org/10.5194/acp-21-1-2021, https://doi.org/10.5194/acp-21-1-2021, 2021
Short summary
Short summary
The present work aims at identifying and quantifying the relative contributions of the key factors in driving a rapid increase in summertime surface O3 over the North China Plain during 2013–2019. In addition to anthropogenic emission reduction and meteorological variabilities, our study highlights the importance of inclusion of aerosol absorption and scattering properties rather than aerosol abundance only in accurate assessment of aerosol radiative effect on surface O3 formation and change.
Xin Yang, Anne-M. Blechschmidt, Kristof Bognar, Audra McClure-Begley, Sara Morris, Irina Petropavlovskikh, Andreas Richter, Henrik Skov, Kimberly Strong, David W. Tarasick, Taneil Uttal, Mika Vestenius, and Xiaoyi Zhao
Atmos. Chem. Phys., 20, 15937–15967, https://doi.org/10.5194/acp-20-15937-2020, https://doi.org/10.5194/acp-20-15937-2020, 2020
Short summary
Short summary
This is a modelling-based study on Arctic surface ozone, with a particular focus on spring ozone depletion events (i.e. with concentrations < 10 ppbv). Model experiments show that model runs with blowing-snow-sourced sea salt aerosols implemented as a source of reactive bromine can reproduce well large-scale ozone depletion events observed in the Arctic. This study supplies modelling evidence of the proposed mechanism of reactive-bromine release from blowing snow on sea ice (Yang et al., 2008).
Huan Song, Xiaorui Chen, Keding Lu, Qi Zou, Zhaofeng Tan, Hendrik Fuchs, Alfred Wiedensohler, Daniel R. Moon, Dwayne E. Heard, María-Teresa Baeza-Romero, Mei Zheng, Andreas Wahner, Astrid Kiendler-Scharr, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 15835–15850, https://doi.org/10.5194/acp-20-15835-2020, https://doi.org/10.5194/acp-20-15835-2020, 2020
Short summary
Short summary
Accurate calculation of the HO2 uptake coefficient is one of the key parameters to quantify the co-reduction of both aerosol and ozone pollution. We modelled various lab measurements of γHO2 based on a gas-liquid phase kinetic model and developed a state-of-the-art parameterized equation. Based on a dataset from a comprehensive field campaign in the North China Plain, we proposed that the determination of the heterogeneous uptake process for HO2 should be included in future field campaigns.
Sebnem Aksoyoglu, Jianhui Jiang, Giancarlo Ciarelli, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 15665–15680, https://doi.org/10.5194/acp-20-15665-2020, https://doi.org/10.5194/acp-20-15665-2020, 2020
Short summary
Short summary
We investigated the role of ammonia in European air quality between 1990 and 2030 under varying land and ship emissions. If ship emissions will be regulated more strictly in the future, particulate nitrate will decrease in coastal areas in northern Europe, while sulfate aerosol will decrease in the Mediterranean region. We predict a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.
Daniel C. Anderson, Bryan N. Duncan, Arlene M. Fiore, Colleen B. Baublitz, Melanie B. Follette-Cook, Julie M. Nicely, and Glenn M. Wolfe
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1192, https://doi.org/10.5194/acp-2020-1192, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
We demonstrate that large-scale climate features are the primary driver of year-to-year variability in simulated values of the hydroxyl radical, the primary atmospheric oxidant, over 1980–2018. The El Nino Southern Oscillation is the dominant mode of hydroxyl variability, resulting in large-scale global decreases in OH during El Nino events. Other climate modes, such as the Australian monsoon and the North Atlantic Oscillation, have impacts of similar magnitude, but on on more localized scales.
Anoop S. Mahajan, Qinyi Li, Swaleha Inamdar, Kirpa Ram, Alba Badia, and Alfonso Saiz-Lopez
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1219, https://doi.org/10.5194/acp-2020-1219, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Using a regional model, we show that iodine catalysed reactions cause large regional changes to the chemical composition in the northern Indian Ocean with peak changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3). These results show the importance of including iodine chemistry in modelling the atmosphere in this region.
Hajime Akimoto, Tatsuya Nagashima, Natsumi Kawano, Li Jie, Joshua S. Fu, and Zifa Wang
Atmos. Chem. Phys., 20, 15003–15014, https://doi.org/10.5194/acp-20-15003-2020, https://doi.org/10.5194/acp-20-15003-2020, 2020
Short summary
Short summary
In order to perform proper model simulation of ozone near the ground in the coastal area of northeastern Asia, it has been found that it is very important to select appropriate dry deposition velocities of ozone on the oceanic water of specific area of the northwestern Pacific. Empirical measurement of the mixing ratios and dry deposition flux of ozone over the ocean in this area is highly recommended.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Jia Xing, Siwei Li, Yueqi Jiang, Shuxiao Wang, Dian Ding, Zhaoxin Dong, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys., 20, 14347–14359, https://doi.org/10.5194/acp-20-14347-2020, https://doi.org/10.5194/acp-20-14347-2020, 2020
Short summary
Short summary
Quantifying emission changes is a prerequisite for assessment of control effectiveness in improving air quality. However, traditional bottom-up methods usually take months to perform and limit timely assessments. A novel method was developed by using a response model that provides real-time estimation of emission changes based on air quality observations. It was successfully applied to quantify emission changes on the North China Plain due to the COVID-19 pandemic shutdown.
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-818, https://doi.org/10.5194/acp-2020-818, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
We combined air quality and exposure response models to analyze the benefits for air quality and human health of China's
ultra-low emissionpolicy in one of its most developed regions. Atmospheric observations and the air quality model were also used to demonstrate improvement of emission inventories incorporating online emission monitoring data. With implementation of the policy in both power and industrial sectors, the attributable deaths due to PM2.5 exposure are estimated to decrease 5.5 %.
Maximilian Herrmann, Holger Sihler, Thomas Wagner, Ulrich Platt, and Eva Gutheil
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-952, https://doi.org/10.5194/acp-2020-952, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
Three-dimensional numerical simulations of tropospheric bromine release and ozone depletion events in the Arctic polar spring of 2009 are analyzed and compared to observations. Simulation results agree well with the observations at both Utqiaġvik, Alaska and at Summit, Greenland. In a parameter study, different settings for the bromine release mechanism are evaluated. An enhancement of the bromine release mechanism is found to be beneficial for the correct prediction of the observations.
Audrey Fortems-Cheiney, Gaëlle Dufour, Karine Dufossé, Florian Couvidat, Jean-Marc Gilliot, Guillaume Siour, Matthias Beekmann, Gilles Foret, Frederik Meleux, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Cathy Clerbaux, and Sophie Génermont
Atmos. Chem. Phys., 20, 13481–13495, https://doi.org/10.5194/acp-20-13481-2020, https://doi.org/10.5194/acp-20-13481-2020, 2020
Short summary
Short summary
Studies have suggested the importance of ammonia emissions on pollution particle formation over Europe, whose main atmospheric source is agriculture. In this study, we performed an inter-comparison of two alternative inventories, both with a reference inventory, that quantify the French ammonia emissions during spring 2011. Over regions with large mineral fertilizer use, like over northeastern France, NH3 emissions are probably considerably underestimated by the reference inventory.
Zhen Qu, Daven K. Henze, Owen R. Cooper, and Jessica L. Neu
Atmos. Chem. Phys., 20, 13109–13130, https://doi.org/10.5194/acp-20-13109-2020, https://doi.org/10.5194/acp-20-13109-2020, 2020
Short summary
Short summary
We use satellite observations and chemical transport modeling to quantify sources of NOx, a major air pollutant, over the past decade. We find improved simulations of the magnitude, seasonality, and trends of NO2 and ozone concentrations using these derived emissions. Changes in ozone pollution driven by human and natural sources are identified in different regions. This work shows the benefits of remote-sensing data and inverse modeling for more accurate ozone simulations.
Rachel L. Tunnicliffe, Anita L. Ganesan, Robert J. Parker, Hartmut Boesch, Nicola Gedney, Benjamin Poulter, Zhen Zhang, Jošt V. Lavrič, David Walter, Matthew Rigby, Stephan Henne, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, https://doi.org/10.5194/acp-20-13041-2020, 2020
Short summary
Short summary
This study quantifies Brazil’s emissions of a potent atmospheric greenhouse gas, methane. This is in the field of atmospheric modelling and uses remotely sensed data and surface measurements of methane concentrations as well as an atmospheric transport model to interpret the data. Because of Brazil’s large emissions from wetlands, agriculture and biomass burning, these emissions affect global methane concentrations and thus are of global significance.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 20, 13011–13022, https://doi.org/10.5194/acp-20-13011-2020, https://doi.org/10.5194/acp-20-13011-2020, 2020
Short summary
Short summary
Decadal trends and variations in OH are critical for understanding atmospheric CH4 evolution. We quantify the impacts of OH trends and variations on the CH4 budget by conducting CH4 inversions on a decadal scale with an ensemble of OH fields. We find the negative OH anomalies due to enhanced fires can reduce the optimized CH4 emissions by up to 10 Tg yr−1 during El Niño years and the positive OH trend from 1986 to 2010 results in a ∼ 23 Tg yr−1 additional increase in optimized CH4 emissions.
David S. Stevenson, Alcide Zhao, Vaishali Naik, Fiona M. O'Connor, Simone Tilmes, Guang Zeng, Lee T. Murray, William J. Collins, Paul T. Griffiths, Sungbo Shim, Larry W. Horowitz, Lori T. Sentman, and Louisa Emmons
Atmos. Chem. Phys., 20, 12905–12920, https://doi.org/10.5194/acp-20-12905-2020, https://doi.org/10.5194/acp-20-12905-2020, 2020
Short summary
Short summary
We present historical trends in atmospheric oxidizing capacity (OC) since 1850 from the latest generation of global climate models and compare these with estimates from measurements. OC controls levels of many key reactive gases, including methane (CH4). We find small model trends up to 1980, then increases of about 9 % up to 2014, disagreeing with (uncertain) measurement-based trends. Major drivers of OC trends are emissions of CH4, NOx, and CO; these will be important for future CH4 trends.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, Mike J. Newland, and Andrew R. Rickard
Atmos. Chem. Phys., 20, 12921–12937, https://doi.org/10.5194/acp-20-12921-2020, https://doi.org/10.5194/acp-20-12921-2020, 2020
Short summary
Short summary
Unsaturated organic compounds are emitted in large quantities from natural and human-influenced sources. Atmospheric removal occurs significantly by reaction with ozone, initiating reaction sequences forming free radicals and organic pollutants in the gaseous and particulate phases. Due to their very large number, it is impossible to study the reaction rate for every compound, and most have to be estimated. Updated and extended estimation methods are reported for use in atmospheric models.
Ioanna Skoulidou, Maria-Elissavet Koukouli, Astrid Manders, Arjo Segers, Dimitris Karagkiozidis, Myrto Gratsea, Dimitris Balis, Alkiviadis Bais, Evangelos Gerasopoulos, Trisevgeni Stavrakou, Jos van Geffen, Henk Eskes, and Andreas Richter
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-987, https://doi.org/10.5194/acp-2020-987, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The performance of LOTOS-EUROS v2.2.001 regional chemical transport model NO2 simulations are investigated over Greece from June to December 2018. Comparison with in-situ NO2 measurements show a spatial correlation coefficient of 0.85 while the model underestimates the concentrations mostly during daytime (12 to 15 pm local time). Further the simulated tropospheric NO2 columns are evaluated against ground-based MAX-DOAS NO2 measurements and S5P/TROPOMi observations for July and December 2018.
Simon Rosanka, Christine Frömming, and Volker Grewe
Atmos. Chem. Phys., 20, 12347–12361, https://doi.org/10.5194/acp-20-12347-2020, https://doi.org/10.5194/acp-20-12347-2020, 2020
Short summary
Short summary
Aviation-attributed nitrogen oxide (NOx) emissions lead to an increase in ozone and a depletion of methane. We investigate the impact of weather-related transport processes on these induced composition changes. Subsidence in high-pressure systems leads to earlier ozone maxima due to an enhanced chemical activity. Background NOx and hydroperoxyl radicals limit the total ozone change during summer and winter, respectively. High water vapour concentrations lead to a high methane depletion.
Peiyu Cao, Chaoqun Lu, Jien Zhang, and Avani Khadilkar
Atmos. Chem. Phys., 20, 11907–11922, https://doi.org/10.5194/acp-20-11907-2020, https://doi.org/10.5194/acp-20-11907-2020, 2020
Short summary
Short summary
In this study, we estimate monthly ammonia emission from synthetic nitrogen fertilizer use across the contiguous US from 1900 to 2015. The results indicate the important role that cropland expansion and nitrogen fertilizer enrichment played in enhancing NH3 emissions. It shows such long-term human activities have dramatically changed the spatiotemporal and seasonal patterns of NH3 emission, impacting air pollution and public health in the US.
Gabriel Isaacman-VanWertz and Bernard Aumont
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1038, https://doi.org/10.5194/acp-2020-1038, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
There are tens of thousands of different chemical compounds in the atmosphere. To tackle this complexity, there are a wide range of different methods to estimate their physical and chemical properties. We use these methods to understand how much the detailed structure of a molecule impacts its properties, and the extent to which properties can be estimated without knowing this level of detail. We find that structure matters, but methods lacking that level of detail still perform reasonably well.
Pengfei Han, Ning Zeng, Tom Oda, Xiaohui Lin, Monica Crippa, Dabo Guan, Greet Janssens-Maenhout, Xiaolin Ma, Zhu Liu, Yuli Shan, Shu Tao, Haikun Wang, Rong Wang, Lin Wu, Xiao Yun, Qiang Zhang, Fang Zhao, and Bo Zheng
Atmos. Chem. Phys., 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020, https://doi.org/10.5194/acp-20-11371-2020, 2020
Short summary
Short summary
An accurate estimation of China’s fossil-fuel CO2 emissions (FFCO2) is significant for quantification of carbon budget and emissions reductions towards the Paris Agreement goals. Here we assessed 9 global and regional inventories. Our findings highlight the significance of using locally measured coal emission factors. We call on the enhancement of physical measurements for validation and provide comprehensive information for inventory, monitoring, modeling, assimilation, and reducing emissions.
Ke Li, Daniel J. Jacob, Lu Shen, Xiao Lu, Isabelle De Smedt, and Hong Liao
Atmos. Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, https://doi.org/10.5194/acp-20-11423-2020, 2020
Short summary
Short summary
Surface summer ozone increased in China from 2013 to 2019 despite new governmental efforts targeting ozone pollution. We find that the ozone increase is mostly due to anthropogenic drivers, although meteorology also plays a role. Further analysis for the North China Plain shows that PM2.5 continued to decrease through 2019, while emissions of volatile organic compounds (VOCs) stayed flat. This could explain the anthropogenic increase in ozone, as PM2.5 scavenges the radical precursors of ozone.
Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Nathan Luke Abraham
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-885, https://doi.org/10.5194/acp-2020-885, 2020
Preprint under review for ACP
Short summary
Short summary
Lightning-generated nitrogen oxides (LNOx) greatly influence tropospheric photochemistry. The most common parameterisation of lightning flash rate used to calculate LNOx in global composition models underestimates measurements over the ocean by a factor of 20–25. We formulate and validate an alternative parameterisation to remedy this problem. The new scheme causes an increase in the ozone burden by 8.5 % and the hydroxyl radical by 13 % and these have implications for climate and air quality.
Cited articles
Baidya, S. and Borken-Kleefeld, J.: Atmospheric emissions from road
transportation in India, Energy Policy, 37, 3812–3822,
https://doi.org/10.1016/j.enpol.2009.07.010, 2009.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res., 109, D14203,
https://doi.org/10.1029/2003JD003697, 2004.
Chandramouli, C.: Census of India 2011, Tables on Houses, Household
Amenities and Assets, the Indian Administrative Service Registrar General
& Census Commissioner, India, 2011.
Chatani, S., Yamaji, K., Sakurai, T., Itahashi, S., Shimadera, H., Kitayama,
K., and Hayami, H.: Overview of model inter-comparison in Japan's Study for
Reference Air Quality Modeling (J-STREAM), Atmosphere, 9, 19,
https://doi.org/10.3390/atmos9010019, 2018.
Clean Air Asia: Accessing Asia: Air Pollution and Greenhouse Gas Emissions
Indicators for Road Transport and Electricity, Pasing City, Philippines,
2012.
Clean Air Asia: Developments in the Asia-Pacific Region, the 10th
Global Partnership Meeting of the Partnership for Clean Fuels and Vehicles,
13 May 2014, Paris, 2014.
Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van Dingenen, R., and Granier, C.: Forty years of improvements in European air quality: regional policy-industry interactions with global impacts, Atmos. Chem. Phys., 16, 3825–3841, https://doi.org/10.5194/acp-16-3825-2016, 2016.
Ding, J., Miyazaki, K., van der A, R. J., Mijling, B., Kurokawa, J.-I., Cho, S., Janssens-Maenhout, G., Zhang, Q., Liu, F., and Levelt, P. F.: Intercomparison of NOx emission inventories over East Asia, Atmos. Chem. Phys., 17, 10125–10141, https://doi.org/10.5194/acp-17-10125-2017, 2017.
EEA (European Environment Agency): EMEP/EEA air pollutant emission inventory
guidebook 2016, EEA Report, 21, available at:
https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 (last access:
1 August 2020), 2016.
Fukui, T., Kokuryo, K., Baba, T., and Kannari, A.: Updating EAGrid2000-Japan
emissions inventory based on the recent emission trends (in Japanese), J.
Jpn. Soc. Atmos. Environ., 49, 117–125,
https://doi.org/10.11298/taiki.49.117, 2014.
Garg, A., Shukla, P. R., Bhattacharaya, S., and Dadhwal, V. K.: Sub-region
(district) and sector level SO2 and NOx emissions for India:
assessment of inventories and mitigation flexibility, Atmos. Environ., 35,
703–713, https://doi.org/10.1016/S1352-2310(00)00316-2, 2001.
Garg, A., Shukla, P. R., and Kaphe, M.: The sectoral trends of multigas
emissions inventory of India, Atmos. Environ., 40, 4608–4620,
https://doi.org/10.1016/j.atmosenv.2006.03.045, 2006.
Goto, S: Progress of non-ferrous metal smelting in recent 10 years, J. Jpn. Mining Ind. Assoc., 97, 602–608,
https://doi.org/10.2473/shigentosozai1953.97.1122_602, 1981 (in
Japanese).
Guttikunda, S. K. and Jawahar, P.: Atmospheric emissions and pollution from
the coal-fired thermal power plants in India, Atmos. Environ., 92, 449–460,
https://doi.org/10.1016/j.atmosenv.2014.04.057, 2014.
Hao, J., Tian, H., and Lu, Y.: Emission Inventories of NOx from
Commercial Energy Consumption in China, 1995–1998, Environ. Sci. Technol.,
36, 552–560, https://doi.org/10.1021/es015601k, 2002.
He, K., Huo, H., Zhang, Q., He, D., An, F., Wang, M., and Walsh, M. P.: Oil
consumption and CO2 emissions in China's road transport: current
status, future trends, and policy implications, Energy Policy, 33,
1499–1507, https://doi.org/10.1016/j.enpol.2004.01.007, 2005.
Higashino, H., Tonooka, Y., Yanagisawa, Y., and Ikeda, Y.: Emission
inventory of air pollutants in East Asia – Anthropogenic emissions of sulfur
dioxide in China, J. Jpn. Soc. Atmos., 30, 374–390,
https://doi.org/10.11298/taiki1995.30.6_374, 1995 (in Japanese).
Higashino, H., Tonooka, Y., Yanagisawa, Y., and Ikeda, Y.: Emission
inventory of air pollutants in East Asia (II) – Focused on estimation of
NOx and CO2 emissions in China, J. Jpn. Soc.
Atmos., 31, 262–281, https://doi.org/10.11298/taiki1995.31.6_262, 1996 (in Japanese).
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hua, S., Tian. H., Wang, K., Zhu, C., Gao, J., Ma, Y., Xue, Y., Wang, Y.,
Duan, S., and Zhou, J.: Atmospheric emission inventory of hazardous air
pollutants from China's cement plants: Temporal trends, spatial variation
characteristics and scenario projections, Atmos. Environ., 128, 1–9,
https://doi.org/10.1016/j.atmosenv.2015.12.056, 2016.
Huo, H., Lei, Y., Zhang, Q., Zhao, L., and He, K.: China's coke industry:
Recent policies, technology shift, and implication for energy and the
environment, Energy Policy, 51, 397–404,
https://doi.org/10.1016/j.enpol.2012.08.041, 2012a.
Huo, H., Zhang, Q., He, K., Yao, Z., and Wang, M.: Vehicle-use intensity in
China: Current status and future trend, Energy Policy, 43, 6–16,
https://doi.org/10.1016/j.enpol.2011.09.019, 2012b.
IEA (International Energy Agency): World Energy Balances, IEA, Paris, 2017.
IPCC (Intergovernmental Panel on Climate Change): the National Greenhouse
Gas Inventories Programme, edited by: Eggleston, H. S., Buendia, L., Miwa, K., Ngara,
T., and Tanabe, K., 2006 IPCC Guidelines for National Greenhouse Gas
Inventories, published by the Institute for Global Environmental Strategies
(IGES), Hayama, Japan on behalf of the IPCC, available at:
http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (last access: 1
August 2020), 2006.
IRF (International Road Federation): World Road Statistics 1963–2015,
International Road Federation, Geneva, 1990–2018.
Itahashi, S., Yumimoto, K., Kurokawa, J., Morino, Y., Nagashima, T.,
Miyazaki, K., Maki, T., and Ohara, T.: Inverse estimation of NOx
emissions over China and India 2005–2016: contrasting recent trends and
future perspectives, Environ. Res. Lett., 14, 124020,
https://doi.org/10.1088/1748-9326/ab4d7f, 2019.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Japan Environmental Sanitation Center and Suuri Keikaku: Report for
prevention of air pollution in East Asia Annex I: Emission inventory in
Vietnam and policy analysis for prevention of air pollution,
2011 (in Japanese).
Japan Statistical Association: Historical Statistics of Japan New Edition
Volume 3, Statistics Bureau, Ministry of Internal Affairs and
Communications, 2006.
Jayarathne, T., Stockwell, C. E., Bhave, P. V., Praveen, P. S., Rathnayake, C. M., Islam, Md. R., Panday, A. K., Adhikari, S., Maharjan, R., Goetz, J. D., DeCarlo, P. F., Saikawa, E., Yokelson, R. J., and Stone, E. A.: Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources, Atmos. Chem. Phys., 18, 2259–2286, https://doi.org/10.5194/acp-18-2259-2018, 2018.
Jiang, Z., Worden, J. R., Worden, H., Deeter, M., Jones, D. B. A., Arellano, A. F., and Henze, D. K.: A 15-year record of CO emissions constrained by MOPITT CO observations, Atmos. Chem. Phys., 17, 4565–4583, https://doi.org/10.5194/acp-17-4565-2017, 2017.
JPEC (Japan Petroleum Energy Center): Emission inventory of road transport
in Japan, JPEC Technical Report, JPEC-2011AQ-02-06, 136 pp.,
2012a (in Japanese).
JPEC: Emission inventory of sources other than road transport in Japan, JPEC
Technical Report, JPEC-2011AQ-02-07, 288 pp., 2012b (in Japanese).
JPEC: Speciation profiles of VOC, PM, and NOx emissions for atmospheric
simulations of PM2.5, JPEC Technical Report,
JPEC-2011AQ-02-08, 69 pp., 2012c (in Japanese).
JPEC: Emission inventory of PM2.5 and profiles of emission sources,
Report of Ministry of Environment of Japan, 2014.
Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H., Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, 2016.
Kannari, A., Baba, T, and Hayami, H.: Estimation of ammonia emissions in
Japan (in Japanese), J. Jpn. Soc. Atmos. Environ., 36, 29–38,
https://doi.org/10.11298/taiki1995.36.29, 2001.
Kannari, A., Tonooka, Y., Baba, T., and Murano, K.: Development of
multiple-species 1 km × 1 km resolution hourly basis emissions
inventory for Japan, Atmos. Environ., 41, 3428–3439,
https://doi.org/10.1016/j.atmosenv.2006.12.015, 2007.
Kato, N. and Akimoto, H.: Anthropogenic emissions of SO2 and NOx
in Asia: emissions inventories, Atmos. Environ., 26, 2997–3017,
https://doi.org/10.1016/0960-1686(92)90291-R, 1992.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Klimont, Z., Cofala, J., Bertok, I., Amann, M., Heyes, C., and Gyarfas, F.:
Modeling particulate emissions in Europe: A framework to estimate reduction
potential and control costs, IIASA, Interim Report IR-02-076, 2002.
Klimont, Z., Smith, S. J., and Cofala, J.: The last decade of global
anthropogenic sulfur dioxide: 2000–2011 emissions, Environ. Res., Lett., 8,
014003, https://doi.org/10.1088/1748-9326/8/1/014003, 2013.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Kupiainen, K. and Klimont, Z.: Primary emissions of submicron and
carbonaceous particles in Europe and the potential for their control, IIASA,
Interim Report IR-04-079, 2004.
Kurokawa, J. and Ohara, T.: Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3, available at: https://www.nies.go.jp/REAS/index.html#REASv3.2 (last access: 31 October 2020), 2020.
Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, Atmos. Chem. Phys., 13, 11019–11058, https://doi.org/10.5194/acp-13-11019-2013, 2013.
Lee, D.-G., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung,
S.-W., Park, J.-M., Lee, S.-B., Han, J.-S., Hong, J.-H., and Lee, S.-J.:
Korean national emissions inventory system and 2007 air pollutant emissions,
Asian J. Atmos. Environ., 5, 278–291,
https://doi.org/10.5572/ajae.2011.5.4.278, 2011.
Lei, Y., Zhang, Q., He, K. B., and Streets, D. G.: Primary anthropogenic aerosol emission trends for China, 1990–2005, Atmos. Chem. Phys., 11, 931–954, https://doi.org/10.5194/acp-11-931-2011, 2011.
Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, 2014.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017a.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, National Science Review, 4, 834–866,
https://doi.org/10.1093/nsr/nwx150, 2017b.
Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J.,
Streets, D., He, H., Ren, X., Li, Z., and Dickerson, R.: India is overtaking
China as the world's largest emitter of anthropogenic sulfur dioxide, Sci.
Rep., 7, 14304, https://doi.org/10.1038/s41598-017-14639-8, 2017.
Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.: High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys., 15, 13299–13317, https://doi.org/10.5194/acp-15-13299-2015, 2015.
Lu, Z., Streets, D. G., Zhang, Q., Wang, S., Carmichael, G. R., Cheng, Y. F., Wei, C., Chin, M., Diehl, T., and Tan, Q.: Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000, Atmos. Chem. Phys., 10, 6311–6331, https://doi.org/10.5194/acp-10-6311-2010, 2010.
Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839–9864, https://doi.org/10.5194/acp-11-9839-2011, 2011.
Ma, Q., Cai, S., Wang, S., Zhao, B., Martin, R. V., Brauer, M., Cohen, A., Jiang, J., Zhou, W., Hao, J., Frostad, J., Forouzanfar, M. H., and Burnett, R. T.: Impacts of coal burning on ambient PM2.5 pollution in China, Atmos. Chem. Phys., 17, 4477–4491, https://doi.org/10.5194/acp-17-4477-2017, 2017.
Maithel, S.: Evaluating energy conservation potential of brick production in
India, Greentech Knowledge Solutions Pvt Ldt., New Delhi, 2013.
Maithel, S., Lalchandani, D., Malhotra, G., Bhanware, P., Uma, R., Ragavan,
S., Athalye, V., Bindiy, K. R., Reddy, S., Bond, T, Weyant, C., Baum, E.,
Kim Thoa, V. T., Thu Phuong, N., and Kim Thanh, T.: Brick Kilns performance assessment: A Roadmap for Cleaner Brick Production in India, Shakti Sustainable Energy Foundation and Climate Works Foundation Supported Initiative, New Delhi, 2012.
Malla, S.: Assessment of mobility and its impact on energy use and air
pollution in Nepal, Energy, 69, 485–496,
https://doi.org/10.1016/j.energy.2014.03.041, 2014.
METI (Ministry of Economy Trade and Industry of Japan): Reports of
Pollutants Release and Transfer Register (2001–2015),
Chemical Management Policy Division, 2003–2017 (in Japanese).
Mitchell, B. R.: International historical statistics: Africa, Asia &
Oceania, 1750–1993 3rd ed., Macmillan reference Ldt., 1998.
Mishra, D. and Goyal, P.: Estimation of vehicular emissions using dynamic
emission factors: A case study of Delhi, India, Atmos. Environ., 98, 1–7,
https://doi.org/10.1016/j.atmosenv.2014.08.047, 2014.
Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Worden, H., Livesey, N., Payne, V. H., Sudo, K., Kanaya, Y., Takigawa, M., and Ogochi, K.: Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018, Earth Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-2223-2020, 2020.
MOEJ (Ministry of Environment of Japan): Report on Volatile Organic Compound
(VOC) Emission Inventory Compiled, available at:
http://www.env.go.jp/air/osen/voc/inventory.html (last access: 1 August
2020), 2017 (in Japanese).
MRI (Mitsubishi Research Institute): Survey report for technologies used to overcome industrial air pollution in Japan, Environment & Energy Research Division, Mitsubishi Research Institute, Inc., 2015 (in Japanese).
National Bureau of Statistics of China: China Statistical Yearbook
(1985–2015), China Statistics Press, Beijing, 1986–2016.
National Bureau of Statistics of China: China Energy Statistical Yearbook
(1985; 1995–2015), China Statistics Press, Beijing, 1986, 2001–2017.
Nishina, K., Ito, A., Hanasaki, N., and Hayashi, S.: Reconstruction of spatially detailed global map of NH and NO application in synthetic nitrogen fertilizer, Earth Syst. Sci. Data, 9, 149–162, https://doi.org/10.5194/essd-9-149-2017, 2017.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, https://doi.org/10.5194/acp-7-4419-2007, 2007.
Paliwal, U., Sharma, M., and Burkhart, J. F.: Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis, Atmos. Chem. Phys., 16, 12457–12476, https://doi.org/10.5194/acp-16-12457-2016, 2016.
Pandey, A. and Venkataraman, C.: Estimating emissions from the Indian
transport sector with on-road fleet composition and traffic volume, Atmos.
Environ., 98, 123–133, https://doi.org/10.1016/j.atmosenv.2014.08.039,
2014.
Pandey, A., Sadavarte, P., Rao, A. B., and Venkataraman, C.: Trends in
multi-pollutant emissions from a technology-linked inventory for India: II.
Residential, agricultural and informal industry sectors, Atmos. Environ., 99, 341–352,
https://doi.org/10.1016/j.atmosenv.2014.09.080, 2014.
Permadi D. A., Sofyan, A., and Oanh, N. T. K.: Assessment of emissions of
greenhouse gases and air pollutants in Indonesia and impacts of national
policy for elimination of kerosene use in cooking, Atmos. Environ., 154,
82–94, https://doi.org/10.1016/j.atmosenv.2017.01.041, 2017.
Pham, T. B. T., Manomaiphiboon, K., and Vongmahadlek, C.: Development of an
inventory and temporal allocation profiles of emissions from power plants
and industrial facilities in Thailand, Sci. Total Environ., 397, 103–118,
https://doi.org/10.1016/j.scitotenv.2008.01.066, 2008.
Platts: The UDI World Electric Power Plants Database, S & P Global
Platts, 2018.
Prakash, J. and Habib, G.: A technology-based mass emission factors of gases
and aerosol precursor and spatial distribution of emissions from on-road
transport sector in India, Atmos. Environ., 180, 192–205,
https://doi.org/10.1016/j.atmosenv.2018.02.053, 2018.
Qu, Z., Henze, D. K., Li, C., Theys, N., Wang, Y., Wang, J., Wang, W., Han,
J., Shim, C., Dickerson, R. R., and Ren, X.: SO2 emission estimates
using OMI SO2 retrievals for 2005–2017, J. Geophys. Res.-Atmos., 124,
8336–8359, https://doi.org/10.1029/2019JD030243, 2019.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide
emissions from India: I – Fossil fuel combustion, Atmos. Environ., 36,
677–697, https://doi.org/10.1016/S1352-2310(01)00463-0, 2002a.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide
emissions from India. Part II – biomass combustion, Atmos. Environ., 36,
699–712, https://doi.org/10.1016/S1352-2310(01)00464-2, 2002b.
Sadavarte, P. and Venkataraman, C.: Trends in multi-pollutant emissions from
a technology-linked inventory for India: I. Industry and transport sectors,
Atmos. Environ., 99, 353–364,
https://doi.org/10.1016/j.atmosenv.2014.09.081, 2014.
Sadavarte, P., Rupakheti, M., Bhave, P., Shakya, K., and Lawrence, M.: Nepal emission inventory – Part I: Technologies and combustion sources (NEEMI-Tech) for 2001–2016, Atmos. Chem. Phys., 19, 12953–12973, https://doi.org/10.5194/acp-19-12953-2019, 2019.
Sahu, S. K., Beig, G., and Sharma, C.: Decadal growth of black carbon
emissions in India, Geophys. Res. Lett., 35, L02807,
https://doi.org/10.1029/2007GL032333, 2008.
Sahu, S. K., Beig, G., and Parkhi, N. S.: Emerging pattern of anthropogenic
NOx emission over Indian subcontinent during 1990s and 2000s, Atmos.
Pollut. Res., 3, 262–269, https://doi.org/10.5094/APR.2012.021, 2012.
Sahu, S. K., Beig, G., and Parkhi, N. S.: Critical emissions from the largest
on-road transport network in South Asia, Aerosol Air Qual. Res., 14,
135–144, https://doi.org/10.4209/aaqr.2013.04.0137, 2014.
Sharma, S., Goel, A., Gupta, D., Kumar, A., Mishra, A., Kundu, S., Chatani,
S., and Klimont, Z.: Emission inventory of non-methane volatile organic
compounds from anthropogenic sources in India, Atmos. Environ., 102,
209–219, https://doi.org/10.1016/j.atmosenv.2014.11.070, 2015.
Shimoda: History of Cement Manufacturing Technology (in Japanese), Report of
National Museum of Nature and Science for systemization of technologies, 23,
1–115, 2016.
Sloss, L.: Mercury emissions from India and Southeast Asia, IEA Clean Coal
Centre, ISBN 978-92-9029-528-0, 2012.
Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and Delgado Arias, S.: Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos. Chem. Phys., 11, 1101–1116, https://doi.org/10.5194/acp-11-1101-2011, 2011.
Stavrakou, T., Muller, J. F., Bauwens, M., De Smedt, I.: Sources and
long-term trends of ozone precursors to Asian Pollution, Air Pollution in
Eastern Asia: an integrated perspective, edited by: Bouarar, I., Wang, X., and
Brasseur, G., Springer international Publishing, 167–189,
https://doi.org/10.1007/978-3-319-59489-7, 2017.
Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., and Zhu, T.: Evaluating the climate and air quality impacts of short-lived pollutants, Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, 2015.
Streets, D. G., Tsai, N. Y., Akimoto, H., and Oka, K.: Sulfur dioxide
emissions in Asia in the period 1985–1997, Atmos. Environ., 34, 4413–4424,
https://doi.org/10.1016/S1352-2310(00)00187-4, 2000.
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q.,
He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J.-H.,
and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in
Asia in the year 2000, J. Geophys. Res., 108, 8809,
https://doi.org/10.1029/2002JD003093, 2003a.
Streets, D. G., Yarber, K. F., Woo, J.-H., and Carmichael, G. R.: Biomass
burning in Asia: Annual and seasonal estimates and atmospheric emissions,
Global Biogeochem. Cy., 17, 1099, https://doi.org/10.1029/2003GB002040,
2003b.
Suzuki, T: Combustion technology in steel industry (in Japanese), Iron and
Steel, 6, 807–816,
https://doi.org/10.2355/tetsutohagane1955.76.6_807, 1990.
TERI (The Energy Resources Institute): TERI Energy & Environment Data
Diary and Yearbook (2012/13; 2016/17), New Delhi, TERI, 2013, 2018.
UN (United Nations): Energy Statistics Database, United Nations Statistics
Division, New York, 2016.
UN: Department of Economic and Social Affairs, Population Division, World
Urbanization Prospects: The 2018 Revision, Online Edition, 2018.
UN Environment: Reducing mercury emission from coal combustion in the energy sector in Thailand prepared by P. Watchalayann et al., Thammasat University, UN Environment: Chemical and Wastes Branch, 2018.
UNEP (United Nations Environmental Programme): Air Pollution in Asia and the
Pacific: Science-based Solutions, ISBN: 978-92-807-3725-7, 2019.
US EPA (United States Environmental Protection Agency): Compilation of air
pollutant emission factors (AP-42) Volume 1: Stationary point and area
sources, United States Environmental Protection Agency, Research Triangle
Park, NC, 1995.
USGS (United States Geological Survey): Minerals Yearbook, Volume III, Area
Reports: International (1994–2015), available at:
https://www.usgs.gov/centers/nmic/international-minerals-statistics-and-information
(last access: 1 August 2020), 1994–2015.
Vallack, H. and Rypdal, K.: The Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Manual, Stockholm Environment Institute, 2012.
Venkataraman, C., Brauer, M., Tibrewal, K., Sadavarte, P., Ma, Q., Cohen, A., Chaliyakunnel, S., Frostad, J., Klimont, Z., Martin, R. V., Millet, D. B., Philip, S., Walker, K., and Wang, S.: Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050), Atmos. Chem. Phys., 18, 8017–8039, https://doi.org/10.5194/acp-18-8017-2018, 2018.
Wang, R., Tao, S., Wang, W., Liu, J., Shen, H., Shen, G., Wang, B., Liu, X.,
Li, W., Huang, Y., Zhang, Y., Lu, Y., Chen, H., Chen, Y., Wang, C., Zhu, D.,
Wang, X., Li, B., Liu, W., and Ma, J.: Black Carbon Emissions in China from
1949 to 2050, Environ. Sci. Technol., 46, 7595–7603,
https://doi.org/10.1021/es3003684, 2012.
Wang, S. X., Zhao, B., Cai, S. Y., Klimont, Z., Nielsen, C. P., Morikawa, T., Woo, J. H., Kim, Y., Fu, X., Xu, J. Y., Hao, J. M., and He, K. B.: Emission trends and mitigation options for air pollutants in East Asia, Atmos. Chem. Phys., 14, 6571–6603, https://doi.org/10.5194/acp-14-6571-2014, 2014.
Wei, W., Wang, S., Hao, J., and Cheng, S.: Projection of anthropogenic
volatile organic compounds (VOCs) emissions in China for the period
2010–2020, Atmos. Environ., 45, 6863–6871,
https://doi.org/10.1016/j.atmosenv.2011.01.013, 2011.
World Steel Association: Steel Statistical Yearbook (1978–2016), World
Steel Association, Brussels, available at:
https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html
(last access: 1 August 2019), 1978–2016.
Wu, Q., Gao, W., Wang, S., and Hao, J.: Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000–2015, Atmos. Chem. Phys., 17, 10423–10433, https://doi.org/10.5194/acp-17-10423-2017, 2017.
Xia, Y., Zhao, Y., and Nielsen, C. P.: Benefits of China's efforts in
gaseous pollutant control indicated by the bottom-up emissions and satellite
observations 2000–2014, 136, 43–53,
https://doi.org/10.1016/j.atmosenv.2016.04.013, 2016.
Yamaji, K., Ohara, T., and Akimoto, H.: Regional-specific emission inventory
for NH3, N2O, and CH4 via animal farming in South, Southeast,
and East Asia, Atmos. Environ., 38, 7111–7121,
https://doi.org/10.1016/j.atmosenv.2004.06.045, 2004.
Yan, X. and Crookes, R. J.: Reduction potentials of energy demand and GHG
emissions in China's road transport sector, Energy Policy, 37, 658–668,
https://doi.org/10.1016/j.enpol.2008.10.008, 2009.
Yan, X., Akimoto, H., and Ohara, T.: Estimation of nitrous oxide, nitric
oxide, and ammonia emissions from croplands in East, Southeast, and South
Asia, Global Change Biol., 9, 1080–1096,
https://doi.org/10.1046/j.1365-2486.2003.00649.x, 2003.
Zhang, Q., Streets, D. G., He, K., Wang, Y., Richter, A., Burrows, J. P.,
Uno, I., Jang, C. J., Chen, D., Yao, Z., and Lei, Y.: NOx emission
trends for China, 1995–2004: The view from the ground and the view from
space, J. Geophys. Res., 112, D22306, https://doi.org/10.1029/2007JD008684,
2007.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhang, S., Wu, Y., Huang, R., Wang, J., Yan, H., Zheng, Y., and Hao, J.: High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city, Atmos. Chem. Phys., 16, 9965–9981, https://doi.org/10.5194/acp-16-9965-2016, 2016.
Zhang, Z.: Energy efficiency and environmental pollution of brickmaking in
China, Energy, 22, 33–42, https://doi.org/10.1016/S0360-5442(96)00078-3,
1997.
Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China, Atmos. Chem. Phys., 11, 2295–2308, https://doi.org/10.5194/acp-11-2295-2011, 2011.
Zhao, Y., Nielsen, C. P., McElroy, M. B., Zhang, L., and Zhang, J.: CO
emissions in China: uncertainties and implications of improved energy
efficiency and emission control, Atmos. Environ., 49, 103–113,
https://doi.org/10.1016/j.atmosenv.2011.12.015, 2012.
Zhao, Y., Zhang, J., and Nielsen, C. P.: The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China, Atmos. Chem. Phys., 13, 487–508, https://doi.org/10.5194/acp-13-487-2013, 2013.
Zhao, Y., Zhang, J., and Nielsen, C. P.: The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants, Atmos. Chem. Phys., 14, 8849–8868, https://doi.org/10.5194/acp-14-8849-2014, 2014.
Zhao, Y., Zhong, H., Zhang, J., and Nielsen, C. P.: Evaluating the effects of China's pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions, Atmos. Chem. Phys., 15, 4317–4337, https://doi.org/10.5194/acp-15-4317-2015, 2015.
Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F., Liu, H., and He, K. B.: High-resolution mapping of vehicle emissions in China in 2008, Atmos. Chem. Phys., 14, 9787–9805, https://doi.org/10.5194/acp-14-9787-2014, 2014.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, B., Chevallier, F., Yin, Y., Ciais, P., Fortems-Cheiney, A., Deeter, M. N., Parker, R. J., Wang, Y., Worden, H. M., and Zhao, Y.: Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions, Earth Syst. Sci. Data, 11, 1411–1436, https://doi.org/10.5194/essd-11-1411-2019, 2019.
Zheng, H., Cai, S., Wang, S., Zhao, B., Chang, X., and Hao, J.: Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling, Atmos. Chem. Phys., 19, 3447–3462, https://doi.org/10.5194/acp-19-3447-2019, 2019.
Zhu, C., Tian, H., Hao, Y., Gao, J., Hao, J., Wang, Y., Hua, S., Wang, K.,
and Liu, H.: A high-resolution emission inventory of anthropogenic trace
elements in Beijing-Tianjin-Hebei (BTH) region of China, Atmos. Environ.,
191, 452–462, https://doi.org/10.1016/j.atmosenv.2018.08.035, 2018.
Short summary
A long historical emission inventory of major air pollutants in Asia during 1950–2015 was developed as Regional Emission inventory in ASia version 3 (REASv3). Trends of emissions and changes in source contributions in countries and regions in Asia during these 6 decades were analyzed. REASv3 provides monthly gridded data with 0.25° by 0.25° resolution for major source categories as well as table of emissions by countries and sub-regions for major sectors and fuel types.
A long historical emission inventory of major air pollutants in Asia during 1950–2015 was...
Altmetrics
Final-revised paper
Preprint