Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12761-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-12761-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3
Junichi Kurokawa
CORRESPONDING AUTHOR
Asia Center for Air Pollution Research, 1182 Sowa, Nishi-ku, Niigata, Niigata, 950-2144, Japan
Toshimasa Ohara
National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
Related authors
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Diego Guizzardi, Monica Crippa, Tim Butler, Terry Keating, Rosa Wu, Jacek W. Kamiński, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Rachel Hoesly, Marilena Muntean, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Annie Duhamel, Tabish Ansari, Kristen Foley, Guannan Geng, Yifei Chen, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-601, https://doi.org/10.5194/essd-2024-601, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The global air pollution emission mosaic HTAP_v3.1 is the state-of-the-art database for addressing the evolution of a set of policy-relevant air pollutants over the past 2 decades. The inventory is made by the harmonization and blending of seven regional inventories, gapfilled using the most recent release of EDGAR (EDGARv8). By incorporating the best available local information, the HTAP_v3.1 mosaic inventory can be used for policy-relevant studies at both regional and global levels.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021, https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Short summary
This study presents the detailed analysis of acid deposition over southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observations are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Diego Guizzardi, Monica Crippa, Tim Butler, Terry Keating, Rosa Wu, Jacek W. Kamiński, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Rachel Hoesly, Marilena Muntean, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Annie Duhamel, Tabish Ansari, Kristen Foley, Guannan Geng, Yifei Chen, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-601, https://doi.org/10.5194/essd-2024-601, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The global air pollution emission mosaic HTAP_v3.1 is the state-of-the-art database for addressing the evolution of a set of policy-relevant air pollutants over the past 2 decades. The inventory is made by the harmonization and blending of seven regional inventories, gapfilled using the most recent release of EDGAR (EDGARv8). By incorporating the best available local information, the HTAP_v3.1 mosaic inventory can be used for policy-relevant studies at both regional and global levels.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021, https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Short summary
This study presents the detailed analysis of acid deposition over southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observations are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Cited articles
Baidya, S. and Borken-Kleefeld, J.: Atmospheric emissions from road
transportation in India, Energy Policy, 37, 3812–3822,
https://doi.org/10.1016/j.enpol.2009.07.010, 2009.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res., 109, D14203,
https://doi.org/10.1029/2003JD003697, 2004.
Chandramouli, C.: Census of India 2011, Tables on Houses, Household
Amenities and Assets, the Indian Administrative Service Registrar General
& Census Commissioner, India, 2011.
Chatani, S., Yamaji, K., Sakurai, T., Itahashi, S., Shimadera, H., Kitayama,
K., and Hayami, H.: Overview of model inter-comparison in Japan's Study for
Reference Air Quality Modeling (J-STREAM), Atmosphere, 9, 19,
https://doi.org/10.3390/atmos9010019, 2018.
Clean Air Asia: Accessing Asia: Air Pollution and Greenhouse Gas Emissions
Indicators for Road Transport and Electricity, Pasing City, Philippines,
2012.
Clean Air Asia: Developments in the Asia-Pacific Region, the 10th
Global Partnership Meeting of the Partnership for Clean Fuels and Vehicles,
13 May 2014, Paris, 2014.
Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van Dingenen, R., and Granier, C.: Forty years of improvements in European air quality: regional policy-industry interactions with global impacts, Atmos. Chem. Phys., 16, 3825–3841, https://doi.org/10.5194/acp-16-3825-2016, 2016.
Ding, J., Miyazaki, K., van der A, R. J., Mijling, B., Kurokawa, J.-I., Cho, S., Janssens-Maenhout, G., Zhang, Q., Liu, F., and Levelt, P. F.: Intercomparison of NOx emission inventories over East Asia, Atmos. Chem. Phys., 17, 10125–10141, https://doi.org/10.5194/acp-17-10125-2017, 2017.
EEA (European Environment Agency): EMEP/EEA air pollutant emission inventory
guidebook 2016, EEA Report, 21, available at:
https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 (last access:
1 August 2020), 2016.
Fukui, T., Kokuryo, K., Baba, T., and Kannari, A.: Updating EAGrid2000-Japan
emissions inventory based on the recent emission trends (in Japanese), J.
Jpn. Soc. Atmos. Environ., 49, 117–125,
https://doi.org/10.11298/taiki.49.117, 2014.
Garg, A., Shukla, P. R., Bhattacharaya, S., and Dadhwal, V. K.: Sub-region
(district) and sector level SO2 and NOx emissions for India:
assessment of inventories and mitigation flexibility, Atmos. Environ., 35,
703–713, https://doi.org/10.1016/S1352-2310(00)00316-2, 2001.
Garg, A., Shukla, P. R., and Kaphe, M.: The sectoral trends of multigas
emissions inventory of India, Atmos. Environ., 40, 4608–4620,
https://doi.org/10.1016/j.atmosenv.2006.03.045, 2006.
Goto, S: Progress of non-ferrous metal smelting in recent 10 years, J. Jpn. Mining Ind. Assoc., 97, 602–608,
https://doi.org/10.2473/shigentosozai1953.97.1122_602, 1981 (in
Japanese).
Guttikunda, S. K. and Jawahar, P.: Atmospheric emissions and pollution from
the coal-fired thermal power plants in India, Atmos. Environ., 92, 449–460,
https://doi.org/10.1016/j.atmosenv.2014.04.057, 2014.
Hao, J., Tian, H., and Lu, Y.: Emission Inventories of NOx from
Commercial Energy Consumption in China, 1995–1998, Environ. Sci. Technol.,
36, 552–560, https://doi.org/10.1021/es015601k, 2002.
He, K., Huo, H., Zhang, Q., He, D., An, F., Wang, M., and Walsh, M. P.: Oil
consumption and CO2 emissions in China's road transport: current
status, future trends, and policy implications, Energy Policy, 33,
1499–1507, https://doi.org/10.1016/j.enpol.2004.01.007, 2005.
Higashino, H., Tonooka, Y., Yanagisawa, Y., and Ikeda, Y.: Emission
inventory of air pollutants in East Asia – Anthropogenic emissions of sulfur
dioxide in China, J. Jpn. Soc. Atmos., 30, 374–390,
https://doi.org/10.11298/taiki1995.30.6_374, 1995 (in Japanese).
Higashino, H., Tonooka, Y., Yanagisawa, Y., and Ikeda, Y.: Emission
inventory of air pollutants in East Asia (II) – Focused on estimation of
NOx and CO2 emissions in China, J. Jpn. Soc.
Atmos., 31, 262–281, https://doi.org/10.11298/taiki1995.31.6_262, 1996 (in Japanese).
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hua, S., Tian. H., Wang, K., Zhu, C., Gao, J., Ma, Y., Xue, Y., Wang, Y.,
Duan, S., and Zhou, J.: Atmospheric emission inventory of hazardous air
pollutants from China's cement plants: Temporal trends, spatial variation
characteristics and scenario projections, Atmos. Environ., 128, 1–9,
https://doi.org/10.1016/j.atmosenv.2015.12.056, 2016.
Huo, H., Lei, Y., Zhang, Q., Zhao, L., and He, K.: China's coke industry:
Recent policies, technology shift, and implication for energy and the
environment, Energy Policy, 51, 397–404,
https://doi.org/10.1016/j.enpol.2012.08.041, 2012a.
Huo, H., Zhang, Q., He, K., Yao, Z., and Wang, M.: Vehicle-use intensity in
China: Current status and future trend, Energy Policy, 43, 6–16,
https://doi.org/10.1016/j.enpol.2011.09.019, 2012b.
IEA (International Energy Agency): World Energy Balances, IEA, Paris, 2017.
IPCC (Intergovernmental Panel on Climate Change): the National Greenhouse
Gas Inventories Programme, edited by: Eggleston, H. S., Buendia, L., Miwa, K., Ngara,
T., and Tanabe, K., 2006 IPCC Guidelines for National Greenhouse Gas
Inventories, published by the Institute for Global Environmental Strategies
(IGES), Hayama, Japan on behalf of the IPCC, available at:
http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (last access: 1
August 2020), 2006.
IRF (International Road Federation): World Road Statistics 1963–2015,
International Road Federation, Geneva, 1990–2018.
Itahashi, S., Yumimoto, K., Kurokawa, J., Morino, Y., Nagashima, T.,
Miyazaki, K., Maki, T., and Ohara, T.: Inverse estimation of NOx
emissions over China and India 2005–2016: contrasting recent trends and
future perspectives, Environ. Res. Lett., 14, 124020,
https://doi.org/10.1088/1748-9326/ab4d7f, 2019.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Japan Environmental Sanitation Center and Suuri Keikaku: Report for
prevention of air pollution in East Asia Annex I: Emission inventory in
Vietnam and policy analysis for prevention of air pollution,
2011 (in Japanese).
Japan Statistical Association: Historical Statistics of Japan New Edition
Volume 3, Statistics Bureau, Ministry of Internal Affairs and
Communications, 2006.
Jayarathne, T., Stockwell, C. E., Bhave, P. V., Praveen, P. S., Rathnayake, C. M., Islam, Md. R., Panday, A. K., Adhikari, S., Maharjan, R., Goetz, J. D., DeCarlo, P. F., Saikawa, E., Yokelson, R. J., and Stone, E. A.: Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources, Atmos. Chem. Phys., 18, 2259–2286, https://doi.org/10.5194/acp-18-2259-2018, 2018.
Jiang, Z., Worden, J. R., Worden, H., Deeter, M., Jones, D. B. A., Arellano, A. F., and Henze, D. K.: A 15-year record of CO emissions constrained by MOPITT CO observations, Atmos. Chem. Phys., 17, 4565–4583, https://doi.org/10.5194/acp-17-4565-2017, 2017.
JPEC (Japan Petroleum Energy Center): Emission inventory of road transport
in Japan, JPEC Technical Report, JPEC-2011AQ-02-06, 136 pp.,
2012a (in Japanese).
JPEC: Emission inventory of sources other than road transport in Japan, JPEC
Technical Report, JPEC-2011AQ-02-07, 288 pp., 2012b (in Japanese).
JPEC: Speciation profiles of VOC, PM, and NOx emissions for atmospheric
simulations of PM2.5, JPEC Technical Report,
JPEC-2011AQ-02-08, 69 pp., 2012c (in Japanese).
JPEC: Emission inventory of PM2.5 and profiles of emission sources,
Report of Ministry of Environment of Japan, 2014.
Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H., Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, 2016.
Kannari, A., Baba, T, and Hayami, H.: Estimation of ammonia emissions in
Japan (in Japanese), J. Jpn. Soc. Atmos. Environ., 36, 29–38,
https://doi.org/10.11298/taiki1995.36.29, 2001.
Kannari, A., Tonooka, Y., Baba, T., and Murano, K.: Development of
multiple-species 1 km × 1 km resolution hourly basis emissions
inventory for Japan, Atmos. Environ., 41, 3428–3439,
https://doi.org/10.1016/j.atmosenv.2006.12.015, 2007.
Kato, N. and Akimoto, H.: Anthropogenic emissions of SO2 and NOx
in Asia: emissions inventories, Atmos. Environ., 26, 2997–3017,
https://doi.org/10.1016/0960-1686(92)90291-R, 1992.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Klimont, Z., Cofala, J., Bertok, I., Amann, M., Heyes, C., and Gyarfas, F.:
Modeling particulate emissions in Europe: A framework to estimate reduction
potential and control costs, IIASA, Interim Report IR-02-076, 2002.
Klimont, Z., Smith, S. J., and Cofala, J.: The last decade of global
anthropogenic sulfur dioxide: 2000–2011 emissions, Environ. Res., Lett., 8,
014003, https://doi.org/10.1088/1748-9326/8/1/014003, 2013.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Kupiainen, K. and Klimont, Z.: Primary emissions of submicron and
carbonaceous particles in Europe and the potential for their control, IIASA,
Interim Report IR-04-079, 2004.
Kurokawa, J. and Ohara, T.: Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3, available at: https://www.nies.go.jp/REAS/index.html#REASv3.2 (last access: 31 October 2020), 2020.
Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., and Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, Atmos. Chem. Phys., 13, 11019–11058, https://doi.org/10.5194/acp-13-11019-2013, 2013.
Lee, D.-G., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung,
S.-W., Park, J.-M., Lee, S.-B., Han, J.-S., Hong, J.-H., and Lee, S.-J.:
Korean national emissions inventory system and 2007 air pollutant emissions,
Asian J. Atmos. Environ., 5, 278–291,
https://doi.org/10.5572/ajae.2011.5.4.278, 2011.
Lei, Y., Zhang, Q., He, K. B., and Streets, D. G.: Primary anthropogenic aerosol emission trends for China, 1990–2005, Atmos. Chem. Phys., 11, 931–954, https://doi.org/10.5194/acp-11-931-2011, 2011.
Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, 2014.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017a.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories
in China: a review, National Science Review, 4, 834–866,
https://doi.org/10.1093/nsr/nwx150, 2017b.
Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J.,
Streets, D., He, H., Ren, X., Li, Z., and Dickerson, R.: India is overtaking
China as the world's largest emitter of anthropogenic sulfur dioxide, Sci.
Rep., 7, 14304, https://doi.org/10.1038/s41598-017-14639-8, 2017.
Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.: High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys., 15, 13299–13317, https://doi.org/10.5194/acp-15-13299-2015, 2015.
Lu, Z., Streets, D. G., Zhang, Q., Wang, S., Carmichael, G. R., Cheng, Y. F., Wei, C., Chin, M., Diehl, T., and Tan, Q.: Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000, Atmos. Chem. Phys., 10, 6311–6331, https://doi.org/10.5194/acp-10-6311-2010, 2010.
Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839–9864, https://doi.org/10.5194/acp-11-9839-2011, 2011.
Ma, Q., Cai, S., Wang, S., Zhao, B., Martin, R. V., Brauer, M., Cohen, A., Jiang, J., Zhou, W., Hao, J., Frostad, J., Forouzanfar, M. H., and Burnett, R. T.: Impacts of coal burning on ambient PM2.5 pollution in China, Atmos. Chem. Phys., 17, 4477–4491, https://doi.org/10.5194/acp-17-4477-2017, 2017.
Maithel, S.: Evaluating energy conservation potential of brick production in
India, Greentech Knowledge Solutions Pvt Ldt., New Delhi, 2013.
Maithel, S., Lalchandani, D., Malhotra, G., Bhanware, P., Uma, R., Ragavan,
S., Athalye, V., Bindiy, K. R., Reddy, S., Bond, T, Weyant, C., Baum, E.,
Kim Thoa, V. T., Thu Phuong, N., and Kim Thanh, T.: Brick Kilns performance assessment: A Roadmap for Cleaner Brick Production in India, Shakti Sustainable Energy Foundation and Climate Works Foundation Supported Initiative, New Delhi, 2012.
Malla, S.: Assessment of mobility and its impact on energy use and air
pollution in Nepal, Energy, 69, 485–496,
https://doi.org/10.1016/j.energy.2014.03.041, 2014.
METI (Ministry of Economy Trade and Industry of Japan): Reports of
Pollutants Release and Transfer Register (2001–2015),
Chemical Management Policy Division, 2003–2017 (in Japanese).
Mitchell, B. R.: International historical statistics: Africa, Asia &
Oceania, 1750–1993 3rd ed., Macmillan reference Ldt., 1998.
Mishra, D. and Goyal, P.: Estimation of vehicular emissions using dynamic
emission factors: A case study of Delhi, India, Atmos. Environ., 98, 1–7,
https://doi.org/10.1016/j.atmosenv.2014.08.047, 2014.
Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Worden, H., Livesey, N., Payne, V. H., Sudo, K., Kanaya, Y., Takigawa, M., and Ogochi, K.: Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018, Earth Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-2223-2020, 2020.
MLTI (Ministry of Land, Infrastructure, Transport and Tourism of Japan):
Annual Report of Road Statistics (1960–2015), Information
Policy Division, 1961–2016 (in Japanese).
MOEJ (Ministry of Environment of Japan): Report on Volatile Organic Compound
(VOC) Emission Inventory Compiled, available at:
http://www.env.go.jp/air/osen/voc/inventory.html (last access: 1 August
2020), 2017 (in Japanese).
MRI (Mitsubishi Research Institute): Survey report for technologies used to overcome industrial air pollution in Japan, Environment & Energy Research Division, Mitsubishi Research Institute, Inc., 2015 (in Japanese).
National Bureau of Statistics of China: China Statistical Yearbook
(1985–2015), China Statistics Press, Beijing, 1986–2016.
National Bureau of Statistics of China: China Energy Statistical Yearbook
(1985; 1995–2015), China Statistics Press, Beijing, 1986, 2001–2017.
Nishina, K., Ito, A., Hanasaki, N., and Hayashi, S.: Reconstruction of spatially detailed global map of NH and NO application in synthetic nitrogen fertilizer, Earth Syst. Sci. Data, 9, 149–162, https://doi.org/10.5194/essd-9-149-2017, 2017.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, https://doi.org/10.5194/acp-7-4419-2007, 2007.
Paliwal, U., Sharma, M., and Burkhart, J. F.: Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis, Atmos. Chem. Phys., 16, 12457–12476, https://doi.org/10.5194/acp-16-12457-2016, 2016.
Pandey, A. and Venkataraman, C.: Estimating emissions from the Indian
transport sector with on-road fleet composition and traffic volume, Atmos.
Environ., 98, 123–133, https://doi.org/10.1016/j.atmosenv.2014.08.039,
2014.
Pandey, A., Sadavarte, P., Rao, A. B., and Venkataraman, C.: Trends in
multi-pollutant emissions from a technology-linked inventory for India: II.
Residential, agricultural and informal industry sectors, Atmos. Environ., 99, 341–352,
https://doi.org/10.1016/j.atmosenv.2014.09.080, 2014.
Permadi D. A., Sofyan, A., and Oanh, N. T. K.: Assessment of emissions of
greenhouse gases and air pollutants in Indonesia and impacts of national
policy for elimination of kerosene use in cooking, Atmos. Environ., 154,
82–94, https://doi.org/10.1016/j.atmosenv.2017.01.041, 2017.
Pham, T. B. T., Manomaiphiboon, K., and Vongmahadlek, C.: Development of an
inventory and temporal allocation profiles of emissions from power plants
and industrial facilities in Thailand, Sci. Total Environ., 397, 103–118,
https://doi.org/10.1016/j.scitotenv.2008.01.066, 2008.
Platts: The UDI World Electric Power Plants Database, S & P Global
Platts, 2018.
Prakash, J. and Habib, G.: A technology-based mass emission factors of gases
and aerosol precursor and spatial distribution of emissions from on-road
transport sector in India, Atmos. Environ., 180, 192–205,
https://doi.org/10.1016/j.atmosenv.2018.02.053, 2018.
Qu, Z., Henze, D. K., Li, C., Theys, N., Wang, Y., Wang, J., Wang, W., Han,
J., Shim, C., Dickerson, R. R., and Ren, X.: SO2 emission estimates
using OMI SO2 retrievals for 2005–2017, J. Geophys. Res.-Atmos., 124,
8336–8359, https://doi.org/10.1029/2019JD030243, 2019.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide
emissions from India: I – Fossil fuel combustion, Atmos. Environ., 36,
677–697, https://doi.org/10.1016/S1352-2310(01)00463-0, 2002a.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide
emissions from India. Part II – biomass combustion, Atmos. Environ., 36,
699–712, https://doi.org/10.1016/S1352-2310(01)00464-2, 2002b.
Sadavarte, P. and Venkataraman, C.: Trends in multi-pollutant emissions from
a technology-linked inventory for India: I. Industry and transport sectors,
Atmos. Environ., 99, 353–364,
https://doi.org/10.1016/j.atmosenv.2014.09.081, 2014.
Sadavarte, P., Rupakheti, M., Bhave, P., Shakya, K., and Lawrence, M.: Nepal emission inventory – Part I: Technologies and combustion sources (NEEMI-Tech) for 2001–2016, Atmos. Chem. Phys., 19, 12953–12973, https://doi.org/10.5194/acp-19-12953-2019, 2019.
Sahu, S. K., Beig, G., and Sharma, C.: Decadal growth of black carbon
emissions in India, Geophys. Res. Lett., 35, L02807,
https://doi.org/10.1029/2007GL032333, 2008.
Sahu, S. K., Beig, G., and Parkhi, N. S.: Emerging pattern of anthropogenic
NOx emission over Indian subcontinent during 1990s and 2000s, Atmos.
Pollut. Res., 3, 262–269, https://doi.org/10.5094/APR.2012.021, 2012.
Sahu, S. K., Beig, G., and Parkhi, N. S.: Critical emissions from the largest
on-road transport network in South Asia, Aerosol Air Qual. Res., 14,
135–144, https://doi.org/10.4209/aaqr.2013.04.0137, 2014.
Sharma, S., Goel, A., Gupta, D., Kumar, A., Mishra, A., Kundu, S., Chatani,
S., and Klimont, Z.: Emission inventory of non-methane volatile organic
compounds from anthropogenic sources in India, Atmos. Environ., 102,
209–219, https://doi.org/10.1016/j.atmosenv.2014.11.070, 2015.
Shimoda: History of Cement Manufacturing Technology (in Japanese), Report of
National Museum of Nature and Science for systemization of technologies, 23,
1–115, 2016.
Shrestha, R. M., Kim Oanh, N. T., Shrestha, R. P., Rupakheti, M.,
Rajbhandari, S., Permadi, D. A., Kanabkaew, T., and Iyngararasan, M.:
Atmospheric Brown Clouds (ABC) Emission Inventory Manual, United Nations
Environment Programme, Nairobi, Kenya, 2013.
Sloss, L.: Mercury emissions from India and Southeast Asia, IEA Clean Coal
Centre, ISBN 978-92-9029-528-0, 2012.
Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and Delgado Arias, S.: Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos. Chem. Phys., 11, 1101–1116, https://doi.org/10.5194/acp-11-1101-2011, 2011.
Stavrakou, T., Muller, J. F., Bauwens, M., De Smedt, I.: Sources and
long-term trends of ozone precursors to Asian Pollution, Air Pollution in
Eastern Asia: an integrated perspective, edited by: Bouarar, I., Wang, X., and
Brasseur, G., Springer international Publishing, 167–189,
https://doi.org/10.1007/978-3-319-59489-7, 2017.
Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., and Zhu, T.: Evaluating the climate and air quality impacts of short-lived pollutants, Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, 2015.
Streets, D. G., Tsai, N. Y., Akimoto, H., and Oka, K.: Sulfur dioxide
emissions in Asia in the period 1985–1997, Atmos. Environ., 34, 4413–4424,
https://doi.org/10.1016/S1352-2310(00)00187-4, 2000.
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q.,
He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J.-H.,
and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in
Asia in the year 2000, J. Geophys. Res., 108, 8809,
https://doi.org/10.1029/2002JD003093, 2003a.
Streets, D. G., Yarber, K. F., Woo, J.-H., and Carmichael, G. R.: Biomass
burning in Asia: Annual and seasonal estimates and atmospheric emissions,
Global Biogeochem. Cy., 17, 1099, https://doi.org/10.1029/2003GB002040,
2003b.
Sun, W., Shao, M., Granier, C., Liu, Y., Ye, C. S., and Zheng, J. Y.:
Long-term trends of anthropogenic SO2, NOx, CO, and NMVOCs
emissions in China, Earth's Future, 6, 1112–1133,
https://doi.org/10.1029/2018EF000822, 2018.
Suzuki, T: Combustion technology in steel industry (in Japanese), Iron and
Steel, 6, 807–816,
https://doi.org/10.2355/tetsutohagane1955.76.6_807, 1990.
TERI (The Energy Resources Institute): TERI Energy & Environment Data
Diary and Yearbook (2012/13; 2016/17), New Delhi, TERI, 2013, 2018.
UN (United Nations): Energy Statistics Database, United Nations Statistics
Division, New York, 2016.
UN: Department of Economic and Social Affairs, Population Division, World
Urbanization Prospects: The 2018 Revision, Online Edition, 2018.
UN Environment: Reducing mercury emission from coal combustion in the energy sector in Thailand prepared by P. Watchalayann et al., Thammasat University, UN Environment: Chemical and Wastes Branch, 2018.
UNEP (United Nations Environmental Programme): Air Pollution in Asia and the
Pacific: Science-based Solutions, ISBN: 978-92-807-3725-7, 2019.
US EPA (United States Environmental Protection Agency): Compilation of air
pollutant emission factors (AP-42) Volume 1: Stationary point and area
sources, United States Environmental Protection Agency, Research Triangle
Park, NC, 1995.
USGS (United States Geological Survey): Minerals Yearbook, Volume III, Area
Reports: International (1994–2015), available at:
https://www.usgs.gov/centers/nmic/international-minerals-statistics-and-information
(last access: 1 August 2020), 1994–2015.
Vallack, H. and Rypdal, K.: The Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Manual, Stockholm Environment Institute, 2012.
Venkataraman, C., Brauer, M., Tibrewal, K., Sadavarte, P., Ma, Q., Cohen, A., Chaliyakunnel, S., Frostad, J., Klimont, Z., Martin, R. V., Millet, D. B., Philip, S., Walker, K., and Wang, S.: Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050), Atmos. Chem. Phys., 18, 8017–8039, https://doi.org/10.5194/acp-18-8017-2018, 2018.
Wang, R., Tao, S., Wang, W., Liu, J., Shen, H., Shen, G., Wang, B., Liu, X.,
Li, W., Huang, Y., Zhang, Y., Lu, Y., Chen, H., Chen, Y., Wang, C., Zhu, D.,
Wang, X., Li, B., Liu, W., and Ma, J.: Black Carbon Emissions in China from
1949 to 2050, Environ. Sci. Technol., 46, 7595–7603,
https://doi.org/10.1021/es3003684, 2012.
Wang, S. X., Zhao, B., Cai, S. Y., Klimont, Z., Nielsen, C. P., Morikawa, T., Woo, J. H., Kim, Y., Fu, X., Xu, J. Y., Hao, J. M., and He, K. B.: Emission trends and mitigation options for air pollutants in East Asia, Atmos. Chem. Phys., 14, 6571–6603, https://doi.org/10.5194/acp-14-6571-2014, 2014.
Wei, W., Wang, S., Hao, J., and Cheng, S.: Projection of anthropogenic
volatile organic compounds (VOCs) emissions in China for the period
2010–2020, Atmos. Environ., 45, 6863–6871,
https://doi.org/10.1016/j.atmosenv.2011.01.013, 2011.
World Steel Association: Steel Statistical Yearbook (1978–2016), World
Steel Association, Brussels, available at:
https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html
(last access: 1 August 2019), 1978–2016.
Wu, Q., Gao, W., Wang, S., and Hao, J.: Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000–2015, Atmos. Chem. Phys., 17, 10423–10433, https://doi.org/10.5194/acp-17-10423-2017, 2017.
Xia, Y., Zhao, Y., and Nielsen, C. P.: Benefits of China's efforts in
gaseous pollutant control indicated by the bottom-up emissions and satellite
observations 2000–2014, 136, 43–53,
https://doi.org/10.1016/j.atmosenv.2016.04.013, 2016.
Yamaji, K., Ohara, T., and Akimoto, H.: Regional-specific emission inventory
for NH3, N2O, and CH4 via animal farming in South, Southeast,
and East Asia, Atmos. Environ., 38, 7111–7121,
https://doi.org/10.1016/j.atmosenv.2004.06.045, 2004.
Yan, X. and Crookes, R. J.: Reduction potentials of energy demand and GHG
emissions in China's road transport sector, Energy Policy, 37, 658–668,
https://doi.org/10.1016/j.enpol.2008.10.008, 2009.
Yan, X., Akimoto, H., and Ohara, T.: Estimation of nitrous oxide, nitric
oxide, and ammonia emissions from croplands in East, Southeast, and South
Asia, Global Change Biol., 9, 1080–1096,
https://doi.org/10.1046/j.1365-2486.2003.00649.x, 2003.
Zhang, Q., Streets, D. G., He, K., Wang, Y., Richter, A., Burrows, J. P.,
Uno, I., Jang, C. J., Chen, D., Yao, Z., and Lei, Y.: NOx emission
trends for China, 1995–2004: The view from the ground and the view from
space, J. Geophys. Res., 112, D22306, https://doi.org/10.1029/2007JD008684,
2007.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhang, S., Wu, Y., Huang, R., Wang, J., Yan, H., Zheng, Y., and Hao, J.: High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city, Atmos. Chem. Phys., 16, 9965–9981, https://doi.org/10.5194/acp-16-9965-2016, 2016.
Zhang, Z.: Energy efficiency and environmental pollution of brickmaking in
China, Energy, 22, 33–42, https://doi.org/10.1016/S0360-5442(96)00078-3,
1997.
Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China, Atmos. Chem. Phys., 11, 2295–2308, https://doi.org/10.5194/acp-11-2295-2011, 2011.
Zhao, Y., Nielsen, C. P., McElroy, M. B., Zhang, L., and Zhang, J.: CO
emissions in China: uncertainties and implications of improved energy
efficiency and emission control, Atmos. Environ., 49, 103–113,
https://doi.org/10.1016/j.atmosenv.2011.12.015, 2012.
Zhao, Y., Zhang, J., and Nielsen, C. P.: The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China, Atmos. Chem. Phys., 13, 487–508, https://doi.org/10.5194/acp-13-487-2013, 2013.
Zhao, Y., Zhang, J., and Nielsen, C. P.: The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants, Atmos. Chem. Phys., 14, 8849–8868, https://doi.org/10.5194/acp-14-8849-2014, 2014.
Zhao, Y., Zhong, H., Zhang, J., and Nielsen, C. P.: Evaluating the effects of China's pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions, Atmos. Chem. Phys., 15, 4317–4337, https://doi.org/10.5194/acp-15-4317-2015, 2015.
Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F., Liu, H., and He, K. B.: High-resolution mapping of vehicle emissions in China in 2008, Atmos. Chem. Phys., 14, 9787–9805, https://doi.org/10.5194/acp-14-9787-2014, 2014.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, B., Chevallier, F., Yin, Y., Ciais, P., Fortems-Cheiney, A., Deeter, M. N., Parker, R. J., Wang, Y., Worden, H. M., and Zhao, Y.: Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions, Earth Syst. Sci. Data, 11, 1411–1436, https://doi.org/10.5194/essd-11-1411-2019, 2019.
Zheng, H., Cai, S., Wang, S., Zhao, B., Chang, X., and Hao, J.: Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling, Atmos. Chem. Phys., 19, 3447–3462, https://doi.org/10.5194/acp-19-3447-2019, 2019.
Zhu, C., Tian, H., Hao, Y., Gao, J., Hao, J., Wang, Y., Hua, S., Wang, K.,
and Liu, H.: A high-resolution emission inventory of anthropogenic trace
elements in Beijing-Tianjin-Hebei (BTH) region of China, Atmos. Environ.,
191, 452–462, https://doi.org/10.1016/j.atmosenv.2018.08.035, 2018.
Short summary
A long historical emission inventory of major air pollutants in Asia during 1950–2015 was developed as Regional Emission inventory in ASia version 3 (REASv3). Trends of emissions and changes in source contributions in countries and regions in Asia during these 6 decades were analyzed. REASv3 provides monthly gridded data with 0.25° by 0.25° resolution for major source categories as well as table of emissions by countries and sub-regions for major sectors and fuel types.
A long historical emission inventory of major air pollutants in Asia during 1950–2015 was...
Altmetrics
Final-revised paper
Preprint