Articles | Volume 20, issue 16
Atmos. Chem. Phys., 20, 10091–10109, 2020
https://doi.org/10.5194/acp-20-10091-2020

Special issue: Sources, propagation, dissipation and impact of gravity waves...

Atmos. Chem. Phys., 20, 10091–10109, 2020
https://doi.org/10.5194/acp-20-10091-2020

Research article 28 Aug 2020

Research article | 28 Aug 2020

Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia

Sonja Gisinger et al.

Related authors

Gravity waves excited during a minor sudden stratospheric warming
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Söder, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018,https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?
Johannes Wagner, Andreas Dörnbrack, Markus Rapp, Sonja Gisinger, Benedikt Ehard, Martina Bramberger, Benjamin Witschas, Fernando Chouza, Stephan Rahm, Christian Mallaun, Gerd Baumgarten, and Peter Hoor
Atmos. Chem. Phys., 17, 4031–4052, https://doi.org/10.5194/acp-17-4031-2017,https://doi.org/10.5194/acp-17-4031-2017, 2017

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Opinion: Gigacity – a source of problems or the new way to sustainable development
Markku Kulmala, Tom V. Kokkonen, Juha Pekkanen, Sami Paatero, Tuukka Petäjä, Veli-Matti Kerminen, and Aijun Ding
Atmos. Chem. Phys., 21, 8313–8322, https://doi.org/10.5194/acp-21-8313-2021,https://doi.org/10.5194/acp-21-8313-2021, 2021
Short summary
The thermodynamic structures of the planetary boundary layer dominated by synoptic circulations and the regular effect on air pollution in Beijing
Yunyan Jiang, Jinyuan Xin, Ying Wang, Guiqian Tang, Yuxin Zhao, Danjie Jia, Dandan Zhao, Meng Wang, Lindong Dai, Lili Wang, Tianxue Wen, and Fangkun Wu
Atmos. Chem. Phys., 21, 6111–6128, https://doi.org/10.5194/acp-21-6111-2021,https://doi.org/10.5194/acp-21-6111-2021, 2021
Short summary
Turbulent and boundary layer characteristics during VOCALS-REx
Dillon S. Dodson and Jennifer D. Small Griswold
Atmos. Chem. Phys., 21, 1937–1961, https://doi.org/10.5194/acp-21-1937-2021,https://doi.org/10.5194/acp-21-1937-2021, 2021
Short summary
Orographically-Induced Spontaneous Imbalance within the Jet Causing a Large Scale Gravity Wave Event
Markus Geldenhuys, Peter Preusse, Isabell Krisch, Christoph Zülicke, Jörn Ungermann, Manfred Ern, Felix Friedl-Vallon, and Martin Riese
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1289,https://doi.org/10.5194/acp-2020-1289, 2021
Revised manuscript accepted for ACP
Short summary
Exploring the elevated water vapor signal associated with the free-tropospheric biomass burning plume over the southeast Atlantic Ocean
Kristina Pistone, Paquita Zuidema, Robert Wood, Michael Diamond, Arlindo M. da Silva, Gonzalo Ferrada, Pablo Saide, Rei Ueyama, Ju-Mee Ryoo, Leonhard Pfister, James Podolske, David Noone, Ryan Bennett, Eric Stith, Gregory Carmichael, Jens Redemann, Connor Flynn, Samuel LeBlanc, Michal Segal-Rozenhaimer, and Yohei Shinozuka
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1322,https://doi.org/10.5194/acp-2020-1322, 2021
Revised manuscript accepted for ACP
Short summary

Cited articles

Baines, P. G.: Topographic effects in stratified flows, Cambridge University Press, 1st edn., 1995. a
Birner, T.: Fine-scale structure of the extratropical tropopause region, J. Geophys. Res.-Atmos., 111, D04104, https://doi.org/10.1029/2005JD006301, 2006. a
Bramberger, M., Dörnbrack, A., Wilms, H., Gemsa, S., Raynor, K., and Sharman, R.: Vertically Propagating Mountain Waves – nA Hazard for High-Flying Aircraft?, J. Appl. Meteorol. Climatol., 57, 1957–1975, https://doi.org/10.1175/JAMC-D-17-0340.1, 2018. a
Brown, P. R. A.: Aircraft measurements of mountain waves and their associated momentum flux over the British Isles, Q. J. Roy. Meteor. Soc., 109, 849–865, https://doi.org/10.1002/qj.49710946211, 1983. a
Bögel, W. and Baumann, R.: Test and Calibration of the DLR Falcon Wind Measuring System by Maneuvers, J. Atmos. Ocean. Tech., 8, 5–18, https://doi.org/10.1175/1520-0426(1991)008<0005:TACOTD>2.0.CO;2, 1991. a
Download
Short summary
Gravity waves are an important coupling mechanism in the atmosphere. Measurements by two research aircraft during a mountain wave event over Scandinavia in 2016 revealed changes of the horizontal scales in the vertical velocity field and of momentum fluxes in the vicinity of the tropopause inversion. Idealized simulations revealed the presence of interfacial waves. They are found downstream of the mountain peaks, meaning that they horizontally transport momentum/energy away from their source.
Altmetrics
Final-revised paper
Preprint