Articles | Volume 20, issue 16
https://doi.org/10.5194/acp-20-10091-2020
https://doi.org/10.5194/acp-20-10091-2020
Research article
 | 
28 Aug 2020
Research article |  | 28 Aug 2020

Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia

Sonja Gisinger, Johannes Wagner, and Benjamin Witschas

Related authors

Pollution slightly enhances atmospheric cooling by low-level clouds in tropical West Africa
Valerian Hahn, Ralf Meerkötter, Christiane Voigt, Sonja Gisinger, Daniel Sauer, Valéry Catoire, Volker Dreiling, Hugh Coe, Cyrille Flamant, Stefan Kaufmann, Jonas Kleine, Peter Knippertz, Manuel Moser, Philip Rosenberg, Hans Schlager, Alfons Schwarzenboeck, and Jonathan Taylor
Atmos. Chem. Phys., 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023,https://doi.org/10.5194/acp-23-8515-2023, 2023
Short summary
Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023,https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary
Gravity waves excited during a minor sudden stratospheric warming
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Faber, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018,https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?
Johannes Wagner, Andreas Dörnbrack, Markus Rapp, Sonja Gisinger, Benedikt Ehard, Martina Bramberger, Benjamin Witschas, Fernando Chouza, Stephan Rahm, Christian Mallaun, Gerd Baumgarten, and Peter Hoor
Atmos. Chem. Phys., 17, 4031–4052, https://doi.org/10.5194/acp-17-4031-2017,https://doi.org/10.5194/acp-17-4031-2017, 2017

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evaluation of methods to determine the surface mixing layer height of the atmospheric boundary layer in the central Arctic during polar night and transition to polar day in cloudless and cloudy conditions
Elisa F. Akansu, Sandro Dahlke, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15473–15489, https://doi.org/10.5194/acp-23-15473-2023,https://doi.org/10.5194/acp-23-15473-2023, 2023
Short summary
The role of a low-level jet for stirring the stable atmospheric surface layer in the Arctic
Ulrike Egerer, Holger Siebert, Olaf Hellmuth, and Lise Lotte Sørensen
Atmos. Chem. Phys., 23, 15365–15373, https://doi.org/10.5194/acp-23-15365-2023,https://doi.org/10.5194/acp-23-15365-2023, 2023
Short summary
Detection of dilution due to turbulent mixing vs. precipitation scavenging effects on biomass burning aerosol concentrations using stable water isotope ratios during ORACLES
Dean Henze, David Noone, and Darin Toohey
Atmos. Chem. Phys., 23, 15269–15288, https://doi.org/10.5194/acp-23-15269-2023,https://doi.org/10.5194/acp-23-15269-2023, 2023
Short summary
Modulation of the intraseasonal variability in early summer precipitation in eastern China by the Quasi-Biennial Oscillation and the Madden–Julian Oscillation
Zefan Ju, Jian Rao, Yue Wang, Junfeng Yang, and Qian Lu
Atmos. Chem. Phys., 23, 14903–14918, https://doi.org/10.5194/acp-23-14903-2023,https://doi.org/10.5194/acp-23-14903-2023, 2023
Short summary
Thermodynamic and kinematic drivers of atmospheric boundary layer stability in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 23, 13087–13106, https://doi.org/10.5194/acp-23-13087-2023,https://doi.org/10.5194/acp-23-13087-2023, 2023
Short summary

Cited articles

Baines, P. G.: Topographic effects in stratified flows, Cambridge University Press, 1st edn., 1995. a
Birner, T.: Fine-scale structure of the extratropical tropopause region, J. Geophys. Res.-Atmos., 111, D04104, https://doi.org/10.1029/2005JD006301, 2006. a
Bramberger, M., Dörnbrack, A., Wilms, H., Gemsa, S., Raynor, K., and Sharman, R.: Vertically Propagating Mountain Waves – nA Hazard for High-Flying Aircraft?, J. Appl. Meteorol. Climatol., 57, 1957–1975, https://doi.org/10.1175/JAMC-D-17-0340.1, 2018. a
Brown, P. R. A.: Aircraft measurements of mountain waves and their associated momentum flux over the British Isles, Q. J. Roy. Meteor. Soc., 109, 849–865, https://doi.org/10.1002/qj.49710946211, 1983. a
Bögel, W. and Baumann, R.: Test and Calibration of the DLR Falcon Wind Measuring System by Maneuvers, J. Atmos. Ocean. Tech., 8, 5–18, https://doi.org/10.1175/1520-0426(1991)008<0005:TACOTD>2.0.CO;2, 1991. a
Download
Short summary
Gravity waves are an important coupling mechanism in the atmosphere. Measurements by two research aircraft during a mountain wave event over Scandinavia in 2016 revealed changes of the horizontal scales in the vertical velocity field and of momentum fluxes in the vicinity of the tropopause inversion. Idealized simulations revealed the presence of interfacial waves. They are found downstream of the mountain peaks, meaning that they horizontally transport momentum/energy away from their source.
Altmetrics
Final-revised paper
Preprint