Articles | Volume 19, issue 15
https://doi.org/10.5194/acp-19-9699-2019
https://doi.org/10.5194/acp-19-9699-2019
Research article
 | 
01 Aug 2019
Research article |  | 01 Aug 2019

Photochemical impacts of haze pollution in an urban environment

Michael Hollaway, Oliver Wild, Ting Yang, Yele Sun, Weiqi Xu, Conghui Xie, Lisa Whalley, Eloise Slater, Dwayne Heard, and Dantong Liu

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Michael Hollaway on behalf of the Authors (11 Jun 2019)  Author's response   Manuscript 
ED: Publish as is (17 Jun 2019) by Frank Keutsch
AR by Michael Hollaway on behalf of the Authors (27 Jun 2019)  Manuscript 
Download
Short summary
This study, for the first time, uses combinations of aerosol and lidar data to drive an offline photolysis scheme. Absorbing species are shown to have the greatest impact on photolysis rate constants in the winter and scattering aerosol are shown to dominate responses in the summer. During haze episodes, aerosols are shown to produce a greater impact than cloud cover. The findings demonstrate the potential photochemical impacts of haze pollution in a highly polluted urban environment.
Altmetrics
Final-revised paper
Preprint