Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 19, issue 13
Atmos. Chem. Phys., 19, 8721–8739, 2019
https://doi.org/10.5194/acp-19-8721-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 19, 8721–8739, 2019
https://doi.org/10.5194/acp-19-8721-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Jul 2019

Research article | 10 Jul 2019

Is water vapor a key player of the wintertime haze in North China Plain?

Jiarui Wu et al.

Viewed

Total article views: 1,341 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
880 437 24 1,341 19 35
  • HTML: 880
  • PDF: 437
  • XML: 24
  • Total: 1,341
  • BibTeX: 19
  • EndNote: 35
Views and downloads (calculated since 14 Feb 2019)
Cumulative views and downloads (calculated since 14 Feb 2019)

Viewed (geographical distribution)

Total article views: 1,039 (including HTML, PDF, and XML) Thereof 1,027 with geography defined and 12 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 28 Oct 2020
Publications Copernicus
Short summary
The near-surface PM2.5 contribution of the ALW total effect is 17.5 % in NCP, indicating that ALW plays an important role in the PM2.5 formation during the wintertime haze pollution. Moreover, the ALW-HET overwhelmingly dominates the PM2.5 enhancement due to the ALW. The ALW does not consistently enhance near-surface [PM2.5] with increasing RH. When the RH exceeds 80 %, the contribution of the ALW begins to decrease, which is caused by the high occurrence frequencies of precipitation.
The near-surface PM2.5 contribution of the ALW total effect is 17.5 % in NCP, indicating that...
Citation
Altmetrics
Final-revised paper
Preprint