Articles | Volume 19, issue 11
https://doi.org/10.5194/acp-19-7913-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-7913-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extending the SBUV polar mesospheric cloud data record with the OMPS NP
Matthew T. DeLand
CORRESPONDING AUTHOR
Science Systems and Applications, Inc. (SSAI), Lanham, Maryland 20706, USA
Gary E. Thomas
Laboratory for Atmospheric and Space Physics (LASP), University of
Colorado, Boulder, Colorado 80303, USA
Related authors
Sandra Wallis, Matthew DeLand, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2165, https://doi.org/10.5194/egusphere-2024-2165, 2024
Short summary
Short summary
The 2022 Hunga eruption emitted about 150 Tg H2O that partly reached the upper polar SH mesosphere in the beginning of 2024. Noctilucent clouds (NLC) did not show a clear perturbation in their occurrence frequency, but the slight increase from mid-January to February could potentially be caused by the additional H2O. It needs 2 years to reach the summer polar mesopause region, analogous to the 1883 Krakatau eruption that is argued to have caused the first sightings of NCLs.
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021, https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Short summary
The 21 June 2019 eruption of the Raikoke volcano produced significant amounts of volcanic aerosols (sulfate and ash) and sulfur dioxide (SO2) gas that penetrated into the lower stratosphere. We showed that the amount of SO2 decreases with a characteristic period of 8–18 d and the peak of sulfate aerosol lags the initial peak of SO2 by 1.5 months. We also examined the dynamics of an unusual stratospheric coherent circular cloud of SO2 and aerosol observed from 18 July to 22 September 2019.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Jerry R. Ziemke, Luke D. Oman, Sarah A. Strode, Anne R. Douglass, Mark A. Olsen, Richard D. McPeters, Pawan K. Bhartia, Lucien Froidevaux, Gordon J. Labow, Jacquie C. Witte, Anne M. Thompson, David P. Haffner, Natalya A. Kramarova, Stacey M. Frith, Liang-Kang Huang, Glen R. Jaross, Colin J. Seftor, Mathew T. Deland, and Steven L. Taylor
Atmos. Chem. Phys., 19, 3257–3269, https://doi.org/10.5194/acp-19-3257-2019, https://doi.org/10.5194/acp-19-3257-2019, 2019
Short summary
Short summary
Both a 38-year merged satellite record of tropospheric ozone from TOMS/OMI/MLS/OMPS and a MERRA-2 GMI model simulation show large increases of 6–7 Dobson units from the Near East to India–East Asia and eastward over the Pacific. These increases in tropospheric ozone are attributed to increases in pollution over the region over the last several decades. Secondary 38-year increases of 4–5 Dobson units with both GMI model and satellite measurements occur over central African–tropical Atlantic.
Zhong Chen, Pawan K. Bhartia, Robert Loughman, Peter Colarco, and Matthew DeLand
Atmos. Meas. Tech., 11, 6495–6509, https://doi.org/10.5194/amt-11-6495-2018, https://doi.org/10.5194/amt-11-6495-2018, 2018
Short summary
Short summary
We describe the derivation of an improved aerosol size distribution (ASD) for the OMPS/LP retrieval algorithm. The new ASD uses a gamma function distribution that is derived from CARMA-calculated results. The new ASD also explains the spectral dependence of LP-measured radiances well. Initial comparisons with collocated extinction profiles retrieved at 676 nm from the SAGE III/ISS instrument show a significant improvement in agreement for the LP retrievals.
Natalya A. Kramarova, Pawan K. Bhartia, Glen Jaross, Leslie Moy, Philippe Xu, Zhong Chen, Matthew DeLand, Lucien Froidevaux, Nathaniel Livesey, Douglas Degenstein, Adam Bourassa, Kaley A. Walker, and Patrick Sheese
Atmos. Meas. Tech., 11, 2837–2861, https://doi.org/10.5194/amt-11-2837-2018, https://doi.org/10.5194/amt-11-2837-2018, 2018
Short summary
Short summary
The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) is a newly designed research sensor aiming to continue high vertical resolution ozone records from space-borne sensors. In summer 2017 all LP measurements were processed with the new version 2.5 algorithm. In this paper we provide a description of the key changes implemented in the new algorithm and evaluate the quality of ozone retrievals by comparing with independent satellite profile measurements (MLS, ACE-FTS and OSIRIS).
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Sergey M. Khaykin, Sophie Godin-Beekmann, Philippe Keckhut, Alain Hauchecorne, Julien Jumelet, Jean-Paul Vernier, Adam Bourassa, Doug A. Degenstein, Landon A. Rieger, Christine Bingen, Filip Vanhellemont, Charles Robert, Matthew DeLand, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 1829–1845, https://doi.org/10.5194/acp-17-1829-2017, https://doi.org/10.5194/acp-17-1829-2017, 2017
Short summary
Short summary
The article is devoted to the long-term evolution and variability of stratospheric aerosol, which plays an important role in climate change and the ozone layer. We use 22-year long continuous observations using laser radar soundings in southern France and satellite-based observations to distinguish between natural aerosol variability (caused by volcanic eruptions) and human-induced change in aerosol concentration. An influence of growing pollution above Asia on stratospheric aerosol is found.
Juseon Bak, Xiong Liu, Jae H. Kim, Matthew T. Deland, and Kelly Chance
Atmos. Meas. Tech., 9, 4521–4531, https://doi.org/10.5194/amt-9-4521-2016, https://doi.org/10.5194/amt-9-4521-2016, 2016
Short summary
Short summary
The main focus of this paper is improving an error of OMI nadir ozone profile retrievals due to the presence of polar mesospheric clouds (PMCs), consisting of small light-scattering particles at an altitude of 80–85 km. This error is shown to be systematic bias from ~ −2 at 2 hPa to ~ −20 % at 0.5 hPa and significantly correlated with brightness of PMCs. We reduce this interference of PMCs on ozone retrievals by including the PMC optical depth in the forward-model calculation and retrieval.
Zhong Chen, Matthew DeLand, and Pawan K. Bhartia
Atmos. Meas. Tech., 9, 1239–1246, https://doi.org/10.5194/amt-9-1239-2016, https://doi.org/10.5194/amt-9-1239-2016, 2016
Short summary
J. Bak, X. Liu, J. H. Kim, M. T. Deland, and K. Chance
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-25907-2015, https://doi.org/10.5194/acpd-15-25907-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This work demonstrated the interference of tenuous PMCs on OMI ozone profile retrievals above 6hPa. The presence of PMCs leads to the systematic biases of -2% at 2hPa and -20% at 0.5hPa in OMI retrievals, which are significantly correlated with brightness of PMCs. We perform simultaneous retrievals of PMC optical depth with ozone using optimal estimation technique, to reduce the interference on ozone profile retrievals. As a result, the negative OMI biases are reduced to within ±10%.
L. K. Huang, M. T. DeLand, S. L. Taylor, and L. E. Flynn
Atmos. Meas. Tech., 7, 267–278, https://doi.org/10.5194/amt-7-267-2014, https://doi.org/10.5194/amt-7-267-2014, 2014
P. K. Bhartia, R. D. McPeters, L. E. Flynn, S. Taylor, N. A. Kramarova, S. Frith, B. Fisher, and M. DeLand
Atmos. Meas. Tech., 6, 2533–2548, https://doi.org/10.5194/amt-6-2533-2013, https://doi.org/10.5194/amt-6-2533-2013, 2013
J. Herman, M. T. DeLand, L.-K. Huang, G. Labow, D. Larko, S. A. Lloyd, J. Mao, W. Qin, and C. Weaver
Atmos. Chem. Phys., 13, 8505–8524, https://doi.org/10.5194/acp-13-8505-2013, https://doi.org/10.5194/acp-13-8505-2013, 2013
N. A. Kramarova, S. M. Frith, P. K. Bhartia, R. D. McPeters, S. L. Taylor, B. L. Fisher, G. J. Labow, and M. T. DeLand
Atmos. Chem. Phys., 13, 6887–6905, https://doi.org/10.5194/acp-13-6887-2013, https://doi.org/10.5194/acp-13-6887-2013, 2013
Sandra Wallis, Matthew DeLand, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2165, https://doi.org/10.5194/egusphere-2024-2165, 2024
Short summary
Short summary
The 2022 Hunga eruption emitted about 150 Tg H2O that partly reached the upper polar SH mesosphere in the beginning of 2024. Noctilucent clouds (NLC) did not show a clear perturbation in their occurrence frequency, but the slight increase from mid-January to February could potentially be caused by the additional H2O. It needs 2 years to reach the summer polar mesopause region, analogous to the 1883 Krakatau eruption that is argued to have caused the first sightings of NCLs.
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021, https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Short summary
The 21 June 2019 eruption of the Raikoke volcano produced significant amounts of volcanic aerosols (sulfate and ash) and sulfur dioxide (SO2) gas that penetrated into the lower stratosphere. We showed that the amount of SO2 decreases with a characteristic period of 8–18 d and the peak of sulfate aerosol lags the initial peak of SO2 by 1.5 months. We also examined the dynamics of an unusual stratospheric coherent circular cloud of SO2 and aerosol observed from 18 July to 22 September 2019.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Gary E. Thomas, Jerry Lumpe, Charles Bardeen, and Cora E. Randall
Atmos. Meas. Tech., 12, 1755–1766, https://doi.org/10.5194/amt-12-1755-2019, https://doi.org/10.5194/amt-12-1755-2019, 2019
Short summary
Short summary
Polar mesospheric clouds are an upper atmospheric phenomenon of great interest in that they provide information about a previously inaccessible atmospheric region, the coldest of the planet. This paper provides the basis for converting raw radiance measurements of clouds, made by diverse satellite instrumentation, into a physically based quantity, the cloud ice water content. The new algorithm allows intercomparisons of data collected using diverse optical methods.
Jerry R. Ziemke, Luke D. Oman, Sarah A. Strode, Anne R. Douglass, Mark A. Olsen, Richard D. McPeters, Pawan K. Bhartia, Lucien Froidevaux, Gordon J. Labow, Jacquie C. Witte, Anne M. Thompson, David P. Haffner, Natalya A. Kramarova, Stacey M. Frith, Liang-Kang Huang, Glen R. Jaross, Colin J. Seftor, Mathew T. Deland, and Steven L. Taylor
Atmos. Chem. Phys., 19, 3257–3269, https://doi.org/10.5194/acp-19-3257-2019, https://doi.org/10.5194/acp-19-3257-2019, 2019
Short summary
Short summary
Both a 38-year merged satellite record of tropospheric ozone from TOMS/OMI/MLS/OMPS and a MERRA-2 GMI model simulation show large increases of 6–7 Dobson units from the Near East to India–East Asia and eastward over the Pacific. These increases in tropospheric ozone are attributed to increases in pollution over the region over the last several decades. Secondary 38-year increases of 4–5 Dobson units with both GMI model and satellite measurements occur over central African–tropical Atlantic.
Zhong Chen, Pawan K. Bhartia, Robert Loughman, Peter Colarco, and Matthew DeLand
Atmos. Meas. Tech., 11, 6495–6509, https://doi.org/10.5194/amt-11-6495-2018, https://doi.org/10.5194/amt-11-6495-2018, 2018
Short summary
Short summary
We describe the derivation of an improved aerosol size distribution (ASD) for the OMPS/LP retrieval algorithm. The new ASD uses a gamma function distribution that is derived from CARMA-calculated results. The new ASD also explains the spectral dependence of LP-measured radiances well. Initial comparisons with collocated extinction profiles retrieved at 676 nm from the SAGE III/ISS instrument show a significant improvement in agreement for the LP retrievals.
Natalya A. Kramarova, Pawan K. Bhartia, Glen Jaross, Leslie Moy, Philippe Xu, Zhong Chen, Matthew DeLand, Lucien Froidevaux, Nathaniel Livesey, Douglas Degenstein, Adam Bourassa, Kaley A. Walker, and Patrick Sheese
Atmos. Meas. Tech., 11, 2837–2861, https://doi.org/10.5194/amt-11-2837-2018, https://doi.org/10.5194/amt-11-2837-2018, 2018
Short summary
Short summary
The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) is a newly designed research sensor aiming to continue high vertical resolution ozone records from space-borne sensors. In summer 2017 all LP measurements were processed with the new version 2.5 algorithm. In this paper we provide a description of the key changes implemented in the new algorithm and evaluate the quality of ozone retrievals by comparing with independent satellite profile measurements (MLS, ACE-FTS and OSIRIS).
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Sergey M. Khaykin, Sophie Godin-Beekmann, Philippe Keckhut, Alain Hauchecorne, Julien Jumelet, Jean-Paul Vernier, Adam Bourassa, Doug A. Degenstein, Landon A. Rieger, Christine Bingen, Filip Vanhellemont, Charles Robert, Matthew DeLand, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 1829–1845, https://doi.org/10.5194/acp-17-1829-2017, https://doi.org/10.5194/acp-17-1829-2017, 2017
Short summary
Short summary
The article is devoted to the long-term evolution and variability of stratospheric aerosol, which plays an important role in climate change and the ozone layer. We use 22-year long continuous observations using laser radar soundings in southern France and satellite-based observations to distinguish between natural aerosol variability (caused by volcanic eruptions) and human-induced change in aerosol concentration. An influence of growing pollution above Asia on stratospheric aerosol is found.
Juseon Bak, Xiong Liu, Jae H. Kim, Matthew T. Deland, and Kelly Chance
Atmos. Meas. Tech., 9, 4521–4531, https://doi.org/10.5194/amt-9-4521-2016, https://doi.org/10.5194/amt-9-4521-2016, 2016
Short summary
Short summary
The main focus of this paper is improving an error of OMI nadir ozone profile retrievals due to the presence of polar mesospheric clouds (PMCs), consisting of small light-scattering particles at an altitude of 80–85 km. This error is shown to be systematic bias from ~ −2 at 2 hPa to ~ −20 % at 0.5 hPa and significantly correlated with brightness of PMCs. We reduce this interference of PMCs on ozone retrievals by including the PMC optical depth in the forward-model calculation and retrieval.
Zhong Chen, Matthew DeLand, and Pawan K. Bhartia
Atmos. Meas. Tech., 9, 1239–1246, https://doi.org/10.5194/amt-9-1239-2016, https://doi.org/10.5194/amt-9-1239-2016, 2016
Short summary
J. Bak, X. Liu, J. H. Kim, M. T. Deland, and K. Chance
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-25907-2015, https://doi.org/10.5194/acpd-15-25907-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This work demonstrated the interference of tenuous PMCs on OMI ozone profile retrievals above 6hPa. The presence of PMCs leads to the systematic biases of -2% at 2hPa and -20% at 0.5hPa in OMI retrievals, which are significantly correlated with brightness of PMCs. We perform simultaneous retrievals of PMC optical depth with ozone using optimal estimation technique, to reduce the interference on ozone profile retrievals. As a result, the negative OMI biases are reduced to within ±10%.
L. K. Huang, M. T. DeLand, S. L. Taylor, and L. E. Flynn
Atmos. Meas. Tech., 7, 267–278, https://doi.org/10.5194/amt-7-267-2014, https://doi.org/10.5194/amt-7-267-2014, 2014
P. K. Bhartia, R. D. McPeters, L. E. Flynn, S. Taylor, N. A. Kramarova, S. Frith, B. Fisher, and M. DeLand
Atmos. Meas. Tech., 6, 2533–2548, https://doi.org/10.5194/amt-6-2533-2013, https://doi.org/10.5194/amt-6-2533-2013, 2013
J. Herman, M. T. DeLand, L.-K. Huang, G. Labow, D. Larko, S. A. Lloyd, J. Mao, W. Qin, and C. Weaver
Atmos. Chem. Phys., 13, 8505–8524, https://doi.org/10.5194/acp-13-8505-2013, https://doi.org/10.5194/acp-13-8505-2013, 2013
N. A. Kramarova, S. M. Frith, P. K. Bhartia, R. D. McPeters, S. L. Taylor, B. L. Fisher, G. J. Labow, and M. T. DeLand
Atmos. Chem. Phys., 13, 6887–6905, https://doi.org/10.5194/acp-13-6887-2013, https://doi.org/10.5194/acp-13-6887-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Common volume satellite studies of polar mesospheric clouds with Odin/OSIRIS tomography and AIM/CIPS nadir imaging
Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images
The relationship between polar mesospheric clouds and their background atmosphere as observed by Odin-SMR and Odin-OSIRIS
Gravity wave influence on NLC: experimental results from ALOMAR, 69° N
First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument
Lina Broman, Susanne Benze, Jörg Gumbel, Ole Martin Christensen, and Cora E. Randall
Atmos. Chem. Phys., 19, 12455–12475, https://doi.org/10.5194/acp-19-12455-2019, https://doi.org/10.5194/acp-19-12455-2019, 2019
Short summary
Short summary
Combining satellite observations of polar mesospheric clouds are complicated due to satellite geometry and measurement technique. In this study, tomographic limb observations are compared to observations from a nadir-viewing satellite using a common volume approach. We present a technique that overcomes differences in scattering conditions and observation geometry. The satellites show excellent agreement, which lays the basis for future insights into horizontal and vertical cloud processes.
Pingping Rong, Jia Yue, James M. Russell III, David E. Siskind, and Cora E. Randall
Atmos. Chem. Phys., 18, 883–899, https://doi.org/10.5194/acp-18-883-2018, https://doi.org/10.5194/acp-18-883-2018, 2018
Short summary
Short summary
There is a massive manifestation of atmospheric gravity waves (GWs) in polar mesospheric clouds (PMCs) at the summer mesopause, which serves as indicators of the atmospheric dynamics and climate change. We obtained a universal power law that governs the GW display morphology and clarity level throughout the wave population residing in PMCs. Higher clarity refers to more distinct exhibition of the features. A GW tracking algorithm is used to identify the waves and to sort the albedo power.
Ole Martin Christensen, Susanne Benze, Patrick Eriksson, Jörg Gumbel, Linda Megner, and Donal P. Murtagh
Atmos. Chem. Phys., 16, 12587–12600, https://doi.org/10.5194/acp-16-12587-2016, https://doi.org/10.5194/acp-16-12587-2016, 2016
Short summary
Short summary
This study investigates the properties of ice clouds forming in the upper summer mesosphere known as polar mesospheric clouds, and their relationship with the background atmosphere combining two different satellite instruments. We find that temperature variations in the atmosphere of the order of some hours reduce the amount of ice in these clouds and see indications of strong vertical transport in these clouds.
H. Wilms, M. Rapp, P. Hoffmann, J. Fiedler, and G. Baumgarten
Atmos. Chem. Phys., 13, 11951–11963, https://doi.org/10.5194/acp-13-11951-2013, https://doi.org/10.5194/acp-13-11951-2013, 2013
K. Pérot, A. Hauchecorne, F. Montmessin, J.-L. Bertaux, L. Blanot, F. Dalaudier, D. Fussen, and E. Kyrölä
Atmos. Chem. Phys., 10, 2723–2735, https://doi.org/10.5194/acp-10-2723-2010, https://doi.org/10.5194/acp-10-2723-2010, 2010
Cited articles
Bailey, S. M., Thomas, G. E., Hervig, M. E., Lumpe, J. D., Randall, C. E.,
Carstens, J. N., Thurairajah, B., Rusch, D. W., Russell III, J. M., and
Gordley, L. L.: Comparing nadir and limb observations of polar mesospheric
clouds: The effect of the assumed particle size distribution, J. Atmos.
Sol.-Terr. Phy., 127, 51–65, https://doi.org/10.1016/j.jastp.2015.02.007, 2015.
Berger, U. and Lübken, F.-J.: Mesospheric temperature trends at
mid-latitudes in summer, Geophys. Res. Lett., 38, L22804,
https://doi.org/10.1029/2011GL049528, 2011.
Berger, U. and Lübken, F.-J.: Trends in mesospheric ice layers in the
Northern Hemisphere during 1961–2013, J. Geophys. Res.-Atmos., 120, 11277–11298,
https://doi.org/10.1002/2015JD023355, 2015.
Christy, J. R. and Norris, W. B.: What may we conclude about global
temperature trends?, Geophys. Res. Lett., 31, L06211,
https://doi.org/10.1029/2003GL019361, 2004.
Chu, X., Espy, P. J., Nott, G. J., Diettrich, J. C., and Gardner, C. S.:
Polar mesospheric clouds observed by an iron Boltzmann lidar at Rothera
(67.5∘ S, 68.0∘ W), Antarctica from 2002 to 2005: Properties and implications,
J. Geophys. Res.-Atmos., 111, D20213, https://doi.org/10.1029/2006JD007086, 2006.
DeLand, M. T.:
SBUV PMC Individual Scan Data, available at: https://sbuv2.gsfc.nasa.gov/pmc/v4, last access: 10 October 2018.
DeLand, M. T. and Thomas, G. E.: Updated PMC trends derived from SBUV data,
J. Geophys. Res.-Atmos., 120, 2140–2166, https://doi.org/10.1002/2014JD022253, 2015.
DeLand, M. T., Shettle, E. P., Thomas, G. E., and Olivero, J. J.: Solar
backscattered ultraviolet (SBUV) observations of polar mesospheric clouds
(PMCs) over two solar cycles, J. Geophys. Res., 108, 8445,
https://doi.org/10.1029/2002JD002398, 2003.
DeLand, M. T., Shettle, E. P., Thomas, G. E., and Olivero, J. J.: A
quarter-century of satellite PMC observations, J. Atmos. Sol.-Terr. Phy.,
68, 9–29, 2006.
DeLand, M. T., Shettle, E. P., Thomas, G. E., and Olivero, J. J.:
Latitude-dependent long-term variations in polar mesospheric clouds from
SBUV Version 3 PMC data, J. Geophys. Res., 112, D10315,
https://doi.org/10.1029/2006JD007857, 2007.
DeLand, M. T., Shettle, E. P., Levelt, P. F., and Kowalewski, M.: Polar
mesospheric clouds (PMCs) observed by the Ozone Monitoring Instrument (OMI)
on Aura, J. Geophys. Res., 115, D21301, https://doi.org/10.1029/2009JD013685, 2010.
DeLand, M. T., Shettle, E. P., Thomas, G. E., and Olivero, J. J.: Direct
observations of PMC local time variations by Aura OMI, J. Atmos. Sol.-Terr.
Phy., 73, 2049–2064, https://doi.org/10.1016/j.jastp.2010.11.019, 2011.
Fiedler, J., Baumgarten, G., Berger, U., Hoffmann, P., Kaifler, N., and Lübken, F.-J.: NLC and the background atmosphere above ALOMAR, Atmos. Chem. Phys., 11, 5701–5717, https://doi.org/10.5194/acp-11-5701-2011, 2011.
Fiedler, J., Baumgarten, G., Berger, U., and Lübken, F.-J.: Long-term
variations of noctilucent clouds at ALOMAR, J. Atmos. Sol.-Terr. Phy.,
162, 79–89, https://doi.org/10.1016/j.jastp.2016.08.006, 2017.
Flynn, L., Long, C., Wu, X., Evans, R., Beck, C. T., Petropavlovskikh, I.,
McConville, G., Yu, W., Zhang, Z., Niu, J., Beach, E., Hao, Y., Pan, C.,
Sen, B., Novicki, M., Zhou, S., and Seftor, C.: Performance of the Ozone
Mapping and Profiling Suite products, J. Geophys. Res.-Atmos., 119,
6181–6195, https://doi.org/10.1002/2013JD020467, 2014.
Garcia, R. R.: Dynamics, radiation, and photochemistry in the mesosphere:
Implications for the formation of noctilucent clouds, J. Geophys. Res., 94,
14605–14615, 1989.
Heath, D. F., Krueger, A. J., Roeder, H. A., and Henderson, B. D.: The Solar
Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for
Nimbus G, Opt. Eng., 14, 323–331, 1975.
Hervig, M. and Siskind, D.: Decadal and inter-hemispheric variability in
polar mesospheric clouds, water vapor, and temperature, J. Atmos. Sol.-Terr. Phy., 68, 30–41, https://doi.org/10.1016/j.jastp.2005.08.010, 2006.
Hervig, M. E. and Stevens, M. H.: Interpreting the 35-year SBUV PMC record
with SOFIE observations, J. Geophys. Res.-Atmos., 119, 12689–12705,
https://doi.org/10.1002/2014JD021923, 2014.
Hervig, M. E., Stevens, M. H., Gordley, L. L., Deaver, L. E., Russell III,
J. M., and Bailey, S. M.: Relationships between polar mesospheric clouds,
temperature, and water vapor from Solar Occultation for Ice Experiment
(SOFIE) observations, J. Geophys. Res., 114, D20203,
https://doi.org/10.1029/2009JD012302, 2009.
Hervig, M. E., Siskind, D. E., Bailey, S. M., and Russell III, J. M.: The
influence of PMCs on water vapor and drivers behind PMC variability from
SOFIE observations, J. Atmos. Sol.-Terr. Phy., 132, 124–134,
https://doi.org/10.1016/j.jastp.2015.07.010, 2015.
Hervig, M. E., Berger, U., and Siskind, D. E.: Decadal variability in PMCs
and implications for changing temperature and water vapor in the upper
mesosphere, J. Geophys. Res.-Atmos., 121, 2383–2392,
https://doi.org/10.1002/2015JD024439, 2016.
Kuilman, M., Karlsson, B., Benze, S., and Megner, L.: Exploring noctilucent
cloud variability using the nudged and extended version of the Canadian
Middle Atmosphere Model, J. Atmos. Sol.-Terr. Phy., 164, 276–288,
https://doi.org/10.1016/j.jastp.2017.08.019, 2017.
Lambert, A., Read, W. G., Livesey, N. J., Santee, M. L., Manney, G. L.,
Froidevaux, L., Wu, D. L., Schwartz, M. J., Pumphrey, H. C., Jimenez, C.,
Nedoluha, G. E., Cofield, R. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J.,
Fuller, R. A., Jamot, R. F., Knosp, B. W., Pickett, H. M., Perun, V. S.,
Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A., Waters, J. W.,
Jucks, K. W., Toon, G. C., Stachnik, R. A., Bernath, P. A., Boone, C. D.,
Walker, K. A., Urban, J., Murtagh, D., Elkins, J. W., and Atlas, E.:
Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor
and nitrous oxide measurements, J. Geophys. Res., 112, D24S36,
https://doi.org/10.1029/2007JD008724, 2007.
Lumpe, J., Bailey, S., Carstens, J., Randall, C., Rusch, D., Thomas, G.,
Nielsen, K., Jeppesen, C., McClintock, W., Merkel, A., Riesberg, L.,
Templeman, B., Baumgarten, G., and Russell III, J. M.: Retrieval of polar
mesospheric cloud properties from CIPS: Algorithm description, error
analysis and cloud detection sensitivity, J. Atmos. Sol.-Terr. Phy., 104,
167–196, https://doi.org/10.1016/j.jastp.2013.06.007, 2013.
Pertsev, N., Dalin, P., Perminov, V., Romejko, V., Dubretis, A.,
Balčiunas, R., Čarnes, K., and Zalcik, M.: Noctilucent clouds
observed from the ground: sensitivity to mesospheric parameters and
long-term time series, Earth Planet. Space, 66, 98,
https://doi.org/10.1186/1880-5981-66-98, 2014.
Peters, D. H. W., Entzian, G., and Keckhut, P.: Mesospheric temperature
trends derived from standard phase-height measurements, J. Atmos. Sol.-Terr. Phy., 163, 23–30, https://doi.org/10.1016/j.jastp.2017.04.007, 2017.
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D.,
Lingenfelser, D. L., Martin-Torres, J., Mlynczak, M. G., Russell III, J. M.,
Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzales, M. J.,
Lopez-Puertas, M., She, C.-Y., Taylor, M. J., and Thompson, R. E.:
Assessment of the quality of the Version 1.07 temperature-versus-pressure
profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res., 113,
D17101, https://doi.org/10.1029/2008JD010013, 2008.
Rong, P. P., Russell III, J. M., Randall, C. E., Bailey, S. M., and Lambert,
A.: Northern PMC brightness zonal variability and its correlation with
temperature and water vapor, J. Geophys. Res.-Atmos., 119, 2390–2408,
https://doi.org/10.1002/2013JD020513, 2014.
Schmidt, F., Baumgarten, G., Berger, U., Fiedler, J., and Lübken, F.-J.: Local time dependence of polar mesospheric clouds: a model study, Atmos. Chem. Phys., 18, 8893–8908, https://doi.org/10.5194/acp-18-8893-2018, 2018.
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J.,
Froidevaux, L., Ao, C. O., Bernath, P. A., Boone, C. D., Cofield, R. E.,
Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jamot, R. F.,
Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J.-L. F.,
Mlynczak, M. G., Pawson, S., Russell III, J. M., Santee, M. L., Snyder, W.
V., Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker,
K. A., Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb
Sounder temperature and geopotential height measurements, J. Geophys. Res.,
113, D15S11, https://doi.org/10.1029/2007JD008783, 2008.
Seftor, C. J., Jaross, G., Kowitt, M., Haken, M., Li, J., and Flynn, L. E.:
Postlaunch performance of the Suomi National Polar-orbiting Partnership
Ozone Mapping and Profiler Suite (OMPS) nadir sensors, J. Geophys. Res.-Atmos., 119, 4413–4428, https://doi.org/10.1002/2013JD020472, 2014.
Shettle, E. P., DeLand, M. T., Thomas, G. E., and Olivero, J. J.: Long term
variations in the frequency of polar mesospheric clouds in the Northern
Hemisphere from SBUV, Geophys. Res. Lett., 36, L02803,
https://doi.org/10.1029/2008GL036048, 2009.
Siskind, D. E., Stevens, M. H., and Englert, C. E.: A model study of global
variability in mesospheric cloudiness, J. Atmos. Sol.-Terr. Phy., 67,
501–513, https://doi.org/10.1016/j.jastp.2004.11.007, 2005.
Siskind, D. E., Stevens, M. H., Hervig, M. E., and Randall, C. E.: Recent
observations of high mass density polar mesospheric clouds: A link to space
traffic?, Geophys. Res. Lett., 40, 2813–2817, https://doi.org/10.1002/grl.50540, 2013.
Stevens, M. H., Lieberman, R. S., Siskind, D. E., McCormack, J. P. Hervig,
M. E., and Englert, C. E.: Periodicities of polar mesospheric clouds
inferred from a meteorological analysis and forecast system, J. Geophys.
Res.-Atmos., 122, 4508–4527, https://doi.org/10.1002/2016JD025349, 2017.
Thomas, G. E., McPeters, R. D., and Jensen, E. J.: Satellite observations of
polar mesospheric clouds by the Solar Backscattered Ultraviolet radiometer:
Evidence of a solar cycle dependence, J. Geophys. Res., 96, 927–939, 1991.
Thomas, G. E., Lumpe, J., Bardeen, C., and Randall, C. E.: Albedo-Ice Regression method for determining ice water content of polar mesospheric clouds using ultraviolet observations from space, Atmos. Meas. Tech., 12, 1755-1766, https://doi.org/10.5194/amt-12-1755-2019, 2019.
von Savigny, C., DeLand, M. T., and Schwartz, M. J.: First identification of
lunar tides in satellite observations of noctilucent clouds, J. Atmos.
Sol.-Terr. Phy., 162, 116–121, https://doi.org/10.1016/j.jastp.2016.07.002, 2017.
Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X.-L., Choi, D.,
Cheang, W.-K., Keller, T., DeLuisi, J., Wuebbles, D. J., Kerr, J. B.,
Miller, A. J., Oltmans, S. J., and Frederick, J. E.: Factors affecting the
detection of trends: Statistical considerations and applications to
environmental data, J. Geophys. Res., 103, 17149–17161, 1998.
Short summary
We have extended our 40-year satellite data record of polar mesospheric cloud (PMC) behavior by adding data from a new instrument. Long-term trends in PMC ice water content derived from this record are smaller since 1998 compared to the first part of our data record. The PMC response to solar activity has decreased in the Northern Hemisphere but increased in the Southern Hemisphere, for reasons that are not understood.
We have extended our 40-year satellite data record of polar mesospheric cloud (PMC) behavior by...
Altmetrics
Final-revised paper
Preprint