Articles | Volume 19, issue 11
https://doi.org/10.5194/acp-19-7913-2019
https://doi.org/10.5194/acp-19-7913-2019
Research article
 | 
14 Jun 2019
Research article |  | 14 Jun 2019

Extending the SBUV polar mesospheric cloud data record with the OMPS NP

Matthew T. DeLand and Gary E. Thomas

Related authors

Has the 2022 Hunga eruption impacted the noctilucent cloud season in 2023/24 and 2024?
Sandra Wallis, Matthew DeLand, and Christian von Savigny
EGUsphere, https://doi.org/10.5194/egusphere-2024-2165,https://doi.org/10.5194/egusphere-2024-2165, 2024
Short summary
Tracking aerosols and SO2 clouds from the Raikoke eruption: 3D view from satellite observations
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021,https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Evaluation of the OMPS/LP stratospheric aerosol extinction product using SAGE III/ISS observations
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020,https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation
Jerry R. Ziemke, Luke D. Oman, Sarah A. Strode, Anne R. Douglass, Mark A. Olsen, Richard D. McPeters, Pawan K. Bhartia, Lucien Froidevaux, Gordon J. Labow, Jacquie C. Witte, Anne M. Thompson, David P. Haffner, Natalya A. Kramarova, Stacey M. Frith, Liang-Kang Huang, Glen R. Jaross, Colin J. Seftor, Mathew T. Deland, and Steven L. Taylor
Atmos. Chem. Phys., 19, 3257–3269, https://doi.org/10.5194/acp-19-3257-2019,https://doi.org/10.5194/acp-19-3257-2019, 2019
Short summary
Improvement of stratospheric aerosol extinction retrieval from OMPS/LP using a new aerosol model
Zhong Chen, Pawan K. Bhartia, Robert Loughman, Peter Colarco, and Matthew DeLand
Atmos. Meas. Tech., 11, 6495–6509, https://doi.org/10.5194/amt-11-6495-2018,https://doi.org/10.5194/amt-11-6495-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Common volume satellite studies of polar mesospheric clouds with Odin/OSIRIS tomography and AIM/CIPS nadir imaging
Lina Broman, Susanne Benze, Jörg Gumbel, Ole Martin Christensen, and Cora E. Randall
Atmos. Chem. Phys., 19, 12455–12475, https://doi.org/10.5194/acp-19-12455-2019,https://doi.org/10.5194/acp-19-12455-2019, 2019
Short summary
Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images
Pingping Rong, Jia Yue, James M. Russell III, David E. Siskind, and Cora E. Randall
Atmos. Chem. Phys., 18, 883–899, https://doi.org/10.5194/acp-18-883-2018,https://doi.org/10.5194/acp-18-883-2018, 2018
Short summary
The relationship between polar mesospheric clouds and their background atmosphere as observed by Odin-SMR and Odin-OSIRIS
Ole Martin Christensen, Susanne Benze, Patrick Eriksson, Jörg Gumbel, Linda Megner, and Donal P. Murtagh
Atmos. Chem. Phys., 16, 12587–12600, https://doi.org/10.5194/acp-16-12587-2016,https://doi.org/10.5194/acp-16-12587-2016, 2016
Short summary
Gravity wave influence on NLC: experimental results from ALOMAR, 69° N
H. Wilms, M. Rapp, P. Hoffmann, J. Fiedler, and G. Baumgarten
Atmos. Chem. Phys., 13, 11951–11963, https://doi.org/10.5194/acp-13-11951-2013,https://doi.org/10.5194/acp-13-11951-2013, 2013
First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument
K. Pérot, A. Hauchecorne, F. Montmessin, J.-L. Bertaux, L. Blanot, F. Dalaudier, D. Fussen, and E. Kyrölä
Atmos. Chem. Phys., 10, 2723–2735, https://doi.org/10.5194/acp-10-2723-2010,https://doi.org/10.5194/acp-10-2723-2010, 2010

Cited articles

Bailey, S. M., Thomas, G. E., Hervig, M. E., Lumpe, J. D., Randall, C. E., Carstens, J. N., Thurairajah, B., Rusch, D. W., Russell III, J. M., and Gordley, L. L.: Comparing nadir and limb observations of polar mesospheric clouds: The effect of the assumed particle size distribution, J. Atmos. Sol.-Terr. Phy., 127, 51–65, https://doi.org/10.1016/j.jastp.2015.02.007, 2015. 
Berger, U. and Lübken, F.-J.: Mesospheric temperature trends at mid-latitudes in summer, Geophys. Res. Lett., 38, L22804, https://doi.org/10.1029/2011GL049528, 2011. 
Berger, U. and Lübken, F.-J.: Trends in mesospheric ice layers in the Northern Hemisphere during 1961–2013, J. Geophys. Res.-Atmos., 120, 11277–11298, https://doi.org/10.1002/2015JD023355, 2015. 
Christy, J. R. and Norris, W. B.: What may we conclude about global temperature trends?, Geophys. Res. Lett., 31, L06211, https://doi.org/10.1029/2003GL019361, 2004. 
Chu, X., Espy, P. J., Nott, G. J., Diettrich, J. C., and Gardner, C. S.: Polar mesospheric clouds observed by an iron Boltzmann lidar at Rothera (67.5 S, 68.0 W), Antarctica from 2002 to 2005: Properties and implications, J. Geophys. Res.-Atmos., 111, D20213, https://doi.org/10.1029/2006JD007086, 2006. 
Download
Short summary
We have extended our 40-year satellite data record of polar mesospheric cloud (PMC) behavior by adding data from a new instrument. Long-term trends in PMC ice water content derived from this record are smaller since 1998 compared to the first part of our data record. The PMC response to solar activity has decreased in the Northern Hemisphere but increased in the Southern Hemisphere, for reasons that are not understood.
Altmetrics
Final-revised paper
Preprint