Articles | Volume 19, issue 7
https://doi.org/10.5194/acp-19-4933-2019
https://doi.org/10.5194/acp-19-4933-2019
Research article
 | 
12 Apr 2019
Research article |  | 12 Apr 2019

Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors

Meloë S. Kacenelenbogen, Mark A. Vaughan, Jens Redemann, Stuart A. Young, Zhaoyan Liu, Yongxiang Hu, Ali H. Omar, Samuel LeBlanc, Yohei Shinozuka, John Livingston, Qin Zhang, and Kathleen A. Powell

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Meloe Kacenelenbogen on behalf of the Authors (16 Mar 2019)  Author's response    Manuscript
ED: Publish as is (18 Mar 2019) by Matthias Tesche
Download
Short summary
Significant efforts are required to estimate the direct radiative effects of aerosols above clouds (DAREcloudy). We have used a combination of passive and active A-Train satellite sensors and derive mainly positive global and regional DAREcloudy values (e.g., global seasonal values between 0.13 and 0.26 W m-2). Despite differences in methods and sensors, the DAREcloudy values in this study are generally higher than previously reported. We discuss the primary reasons for these higher estimates.
Altmetrics
Final-revised paper
Preprint