Articles | Volume 19, issue 1
https://doi.org/10.5194/acp-19-425-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-425-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Structural changes in the shallow and transition branch of the Brewer–Dobson circulation induced by El Niño
Institute of Energy and Climate Research, Stratosphere (IEK–7), Forschungszentrum Jülich, 52425 Jülich, Germany
Laboratoire de Météorologie Dynamique, UMR8539, IPSL, UPMC/ENS/CNRS/Ecole Polytechnique, Paris, France
Paul Konopka
Institute of Energy and Climate Research, Stratosphere (IEK–7), Forschungszentrum Jülich, 52425 Jülich, Germany
Michelle L. Santee
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Rolf Müller
Institute of Energy and Climate Research, Stratosphere (IEK–7), Forschungszentrum Jülich, 52425 Jülich, Germany
Mengchu Tao
Institute of Energy and Climate Research, Stratosphere (IEK–7), Forschungszentrum Jülich, 52425 Jülich, Germany
Kaley A. Walker
Department of Physics, University of Toronto, Toronto, Ontario, Canada
Bernard Legras
Laboratoire de Météorologie Dynamique, UMR8539, IPSL, UPMC/ENS/CNRS/Ecole Polytechnique, Paris, France
Martin Riese
Institute of Energy and Climate Research, Stratosphere (IEK–7), Forschungszentrum Jülich, 52425 Jülich, Germany
Manfred Ern
Institute of Energy and Climate Research, Stratosphere (IEK–7), Forschungszentrum Jülich, 52425 Jülich, Germany
Felix Ploeger
Institute of Energy and Climate Research, Stratosphere (IEK–7), Forschungszentrum Jülich, 52425 Jülich, Germany
Institute for Atmospheric and Environmental Research, University of Wuppertal, Wuppertal, Germany
Viewed
Total article views: 4,206 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 Aug 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,325 | 819 | 62 | 4,206 | 53 | 41 |
- HTML: 3,325
- PDF: 819
- XML: 62
- Total: 4,206
- BibTeX: 53
- EndNote: 41
Total article views: 3,601 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Jan 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,962 | 588 | 51 | 3,601 | 40 | 34 |
- HTML: 2,962
- PDF: 588
- XML: 51
- Total: 3,601
- BibTeX: 40
- EndNote: 34
Total article views: 605 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 06 Aug 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
363 | 231 | 11 | 605 | 13 | 7 |
- HTML: 363
- PDF: 231
- XML: 11
- Total: 605
- BibTeX: 13
- EndNote: 7
Viewed (geographical distribution)
Total article views: 4,206 (including HTML, PDF, and XML)
Thereof 4,007 with geography defined
and 199 with unknown origin.
Total article views: 3,601 (including HTML, PDF, and XML)
Thereof 3,403 with geography defined
and 198 with unknown origin.
Total article views: 605 (including HTML, PDF, and XML)
Thereof 604 with geography defined
and 1 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
14 citations as recorded by crossref.
- Stratospheric Fluorine as a Tracer of Circulation Changes: Comparison Between Infrared Remote‐Sensing Observations and Simulations With Five Modern Reanalyses M. Prignon et al. 10.1029/2021JD034995
- The influence of the stratospheric Quasi-Biennial Oscillation on trace gas levels at the Earth’s surface E. Ray et al. 10.1038/s41561-019-0507-3
- Impacts of the Indo‐Pacific Warm Pool on Lower Stratospheric Water Vapor: Seasonality and Hemispheric Contrasts X. Zhou et al. 10.1029/2020JD034363
- Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability W. Ball et al. 10.5194/acp-19-12731-2019
- The middle atmospheric meridional circulation for 2002–2012 derived from MIPAS observations T. von Clarmann et al. 10.5194/acp-21-8823-2021
- Impacto do ENOS na Variabilidade da Coluna Total de Ozônio Sobre a Região Nordeste do Brasil - Parte 1: El Niño Canônico e Modoki D. Lima et al. 10.1590/0102-778635500098
- Tropical Stratospheric Circulation and Ozone Coupled to Pacific Multi‐Decadal Variability F. Iglesias‐Suarez et al. 10.1029/2020GL092162
- Climatological impact of the Brewer–Dobson circulation on the N<sub>2</sub>O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses D. Minganti et al. 10.5194/acp-20-12609-2020
- How robust are stratospheric age of air trends from different reanalyses? F. Ploeger et al. 10.5194/acp-19-6085-2019
- Large Anomalies in the Tropical Upper Troposphere Lower Stratosphere (UTLS) Trace Gases Observed during the Extreme 2015–16 El Niño Event by Using Satellite Measurements S. Ravindrababu et al. 10.3390/rs11060687
- Long-term variations in ozone levels in the troposphere and lower stratosphere over Beijing: observations and model simulations Y. Zhang et al. 10.5194/acp-20-13343-2020
- Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products M. Tao et al. 10.5194/acp-19-6509-2019
- The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends M. Diallo et al. 10.5194/acp-21-7515-2021
- Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends N. Livesey et al. 10.5194/acp-21-15409-2021
14 citations as recorded by crossref.
- Stratospheric Fluorine as a Tracer of Circulation Changes: Comparison Between Infrared Remote‐Sensing Observations and Simulations With Five Modern Reanalyses M. Prignon et al. 10.1029/2021JD034995
- The influence of the stratospheric Quasi-Biennial Oscillation on trace gas levels at the Earth’s surface E. Ray et al. 10.1038/s41561-019-0507-3
- Impacts of the Indo‐Pacific Warm Pool on Lower Stratospheric Water Vapor: Seasonality and Hemispheric Contrasts X. Zhou et al. 10.1029/2020JD034363
- Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability W. Ball et al. 10.5194/acp-19-12731-2019
- The middle atmospheric meridional circulation for 2002–2012 derived from MIPAS observations T. von Clarmann et al. 10.5194/acp-21-8823-2021
- Impacto do ENOS na Variabilidade da Coluna Total de Ozônio Sobre a Região Nordeste do Brasil - Parte 1: El Niño Canônico e Modoki D. Lima et al. 10.1590/0102-778635500098
- Tropical Stratospheric Circulation and Ozone Coupled to Pacific Multi‐Decadal Variability F. Iglesias‐Suarez et al. 10.1029/2020GL092162
- Climatological impact of the Brewer–Dobson circulation on the N<sub>2</sub>O budget in WACCM, a chemical reanalysis and a CTM driven by four dynamical reanalyses D. Minganti et al. 10.5194/acp-20-12609-2020
- How robust are stratospheric age of air trends from different reanalyses? F. Ploeger et al. 10.5194/acp-19-6085-2019
- Large Anomalies in the Tropical Upper Troposphere Lower Stratosphere (UTLS) Trace Gases Observed during the Extreme 2015–16 El Niño Event by Using Satellite Measurements S. Ravindrababu et al. 10.3390/rs11060687
- Long-term variations in ozone levels in the troposphere and lower stratosphere over Beijing: observations and model simulations Y. Zhang et al. 10.5194/acp-20-13343-2020
- Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products M. Tao et al. 10.5194/acp-19-6509-2019
- The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends M. Diallo et al. 10.5194/acp-21-7515-2021
- Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends N. Livesey et al. 10.5194/acp-21-15409-2021
Latest update: 01 Apr 2023
Short summary
This paper assesses the structural changes in the shallow and transition branches of the BDC induced by El Nino using the Lagrangian model simulations driven by ERAi and JRA-55 combined with MLS observations. We found a clear evidence of a weakening of the transition branch due to an upward shift in the dissipation height of the planetary and gravity waves and a strengthening of the shallow branch due to enhanced GW breaking in the tropics–subtropics and PW breaking at high latitudes.
This paper assesses the structural changes in the shallow and transition branches of the BDC...
Altmetrics
Final-revised paper
Preprint