Articles | Volume 19, issue 5
https://doi.org/10.5194/acp-19-3137-2019
https://doi.org/10.5194/acp-19-3137-2019
Research article
 | 
12 Mar 2019
Research article |  | 12 Mar 2019

The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings

Anna L. Hodshire, Pedro Campuzano-Jost, John K. Kodros, Betty Croft, Benjamin A. Nault, Jason C. Schroder, Jose L. Jimenez, and Jeffrey R. Pierce

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Hodshire on behalf of the Authors (13 Feb 2019)  Author's response
ED: Publish as is (18 Feb 2019) by Veli-Matti Kerminen
Download
Short summary
A global chemical-transport model is used to determine the impact of methanesulfonic acid (MSA) on the aerosol size distribution and associated radiative effects, testing varying assumptions of MSA’s effective volatility and nucleating ability. We find that MSA mass best matches the ATom airborne measurements when volatility varies as a function of temperature, relative humidity, and available gas-phase bases, and the MSA radiative forcing is on the order of -50 mW m-2 over the Southern Ocean.
Altmetrics
Final-revised paper
Preprint