Articles | Volume 19, issue 23
https://doi.org/10.5194/acp-19-14493-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-14493-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic
Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149, USA
Viewed
Total article views: 5,300 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 May 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
4,248 | 961 | 91 | 5,300 | 208 | 73 | 72 |
- HTML: 4,248
- PDF: 961
- XML: 91
- Total: 5,300
- Supplement: 208
- BibTeX: 73
- EndNote: 72
Total article views: 4,605 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 29 Nov 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,877 | 656 | 72 | 4,605 | 208 | 59 | 50 |
- HTML: 3,877
- PDF: 656
- XML: 72
- Total: 4,605
- Supplement: 208
- BibTeX: 59
- EndNote: 50
Total article views: 695 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 May 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
371 | 305 | 19 | 695 | 14 | 22 |
- HTML: 371
- PDF: 305
- XML: 19
- Total: 695
- BibTeX: 14
- EndNote: 22
Viewed (geographical distribution)
Total article views: 5,300 (including HTML, PDF, and XML)
Thereof 4,942 with geography defined
and 358 with unknown origin.
Total article views: 4,605 (including HTML, PDF, and XML)
Thereof 4,311 with geography defined
and 294 with unknown origin.
Total article views: 695 (including HTML, PDF, and XML)
Thereof 631 with geography defined
and 64 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
28 citations as recorded by crossref.
- Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic S. Doherty et al. 10.5194/acp-22-1-2022
- Cloud Mesoscale Cellular Classification and Diurnal Cycle Using a Convolutional Neural Network (CNN) M. Segal Rozenhaimer et al. 10.3390/rs15061607
- Radiative heating rate profiles over the southeast Atlantic Ocean during the 2016 and 2017 biomass burning seasons A. Marquardt Collow et al. 10.5194/acp-20-10073-2020
- Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign F. Peers et al. 10.5194/acp-21-3235-2021
- Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region M. Kacarab et al. 10.5194/acp-20-3029-2020
- Retrieval of the sea spray aerosol mode from submicron particle size distributions and supermicron scattering during LASIC J. Dedrick et al. 10.5194/amt-15-4171-2022
- Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic H. Che et al. 10.5194/acp-22-10789-2022
- Cloud adjustments from large-scale smoke–circulation interactions strongly modulate the southeastern Atlantic stratocumulus-to-cumulus transition M. Diamond et al. 10.5194/acp-22-12113-2022
- On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic I. Chang et al. 10.5194/acp-23-4283-2023
- Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments S. Cochrane et al. 10.5194/amt-15-61-2022
- A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics J. Ryoo et al. 10.5194/acp-22-14209-2022
- Open cells exhibit weaker entrainment of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer S. Abel et al. 10.5194/acp-20-4059-2020
- The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign J. Haywood et al. 10.5194/acp-21-1049-2021
- Aerosol first indirect effect of African smoke at the cloud base of marine cumulus clouds over Ascension Island, southern Atlantic Ocean M. de Graaf et al. 10.5194/acp-23-5373-2023
- An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin J. Redemann et al. 10.5194/acp-21-1507-2021
- Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia K. Ding et al. 10.1038/s41467-021-26728-4
- Joint cloud water path and rainwater path retrievals from airborne ORACLES observations A. Dzambo et al. 10.5194/acp-21-5513-2021
- Biomass-burning smoke's properties and its interactions with marine stratocumulus clouds in WRF-CAM5 and southeastern Atlantic field campaigns C. Howes et al. 10.5194/acp-23-13911-2023
- Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017 H. Wu et al. 10.5194/acp-20-12697-2020
- Vertical structure of biomass burning aerosol transported over the southeast Atlantic Ocean H. Harshvardhan et al. 10.5194/acp-22-9859-2022
- Sunlight-absorbing aerosol amplifies the seasonal cycle in low-cloud fraction over the southeast Atlantic J. Zhang & P. Zuidema 10.5194/acp-21-11179-2021
- Aerosol Detection from the Cloud–Aerosol Transport System on the International Space Station: Algorithm Overview and Implications for Diurnal Sampling E. Nowottnick et al. 10.3390/atmos13091439
- Absorption closure in highly aged biomass burning smoke J. Taylor et al. 10.5194/acp-20-11201-2020
- Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study M. Mallet et al. 10.5194/acp-20-13191-2020
- A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1 – Climatology J. Ryoo et al. 10.5194/acp-21-16689-2021
- Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments P. Barrett et al. 10.5194/amt-15-6329-2022
- The impact of aerosols on stratiform clouds over southern West Africa: a large-eddy-simulation study L. Delbeke et al. 10.5194/acp-23-13329-2023
- Spatiotemporal Heterogeneity of Aerosol and Cloud Properties Over the Southeast Atlantic: An Observational Analysis I. Chang et al. 10.1029/2020GL091469
28 citations as recorded by crossref.
- Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic S. Doherty et al. 10.5194/acp-22-1-2022
- Cloud Mesoscale Cellular Classification and Diurnal Cycle Using a Convolutional Neural Network (CNN) M. Segal Rozenhaimer et al. 10.3390/rs15061607
- Radiative heating rate profiles over the southeast Atlantic Ocean during the 2016 and 2017 biomass burning seasons A. Marquardt Collow et al. 10.5194/acp-20-10073-2020
- Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign F. Peers et al. 10.5194/acp-21-3235-2021
- Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region M. Kacarab et al. 10.5194/acp-20-3029-2020
- Retrieval of the sea spray aerosol mode from submicron particle size distributions and supermicron scattering during LASIC J. Dedrick et al. 10.5194/amt-15-4171-2022
- Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic H. Che et al. 10.5194/acp-22-10789-2022
- Cloud adjustments from large-scale smoke–circulation interactions strongly modulate the southeastern Atlantic stratocumulus-to-cumulus transition M. Diamond et al. 10.5194/acp-22-12113-2022
- On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic I. Chang et al. 10.5194/acp-23-4283-2023
- Biomass burning aerosol heating rates from the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 experiments S. Cochrane et al. 10.5194/amt-15-61-2022
- A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 2 – Daily and synoptic characteristics J. Ryoo et al. 10.5194/acp-22-14209-2022
- Open cells exhibit weaker entrainment of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer S. Abel et al. 10.5194/acp-20-4059-2020
- The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign J. Haywood et al. 10.5194/acp-21-1049-2021
- Aerosol first indirect effect of African smoke at the cloud base of marine cumulus clouds over Ascension Island, southern Atlantic Ocean M. de Graaf et al. 10.5194/acp-23-5373-2023
- An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin J. Redemann et al. 10.5194/acp-21-1507-2021
- Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia K. Ding et al. 10.1038/s41467-021-26728-4
- Joint cloud water path and rainwater path retrievals from airborne ORACLES observations A. Dzambo et al. 10.5194/acp-21-5513-2021
- Biomass-burning smoke's properties and its interactions with marine stratocumulus clouds in WRF-CAM5 and southeastern Atlantic field campaigns C. Howes et al. 10.5194/acp-23-13911-2023
- Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017 H. Wu et al. 10.5194/acp-20-12697-2020
- Vertical structure of biomass burning aerosol transported over the southeast Atlantic Ocean H. Harshvardhan et al. 10.5194/acp-22-9859-2022
- Sunlight-absorbing aerosol amplifies the seasonal cycle in low-cloud fraction over the southeast Atlantic J. Zhang & P. Zuidema 10.5194/acp-21-11179-2021
- Aerosol Detection from the Cloud–Aerosol Transport System on the International Space Station: Algorithm Overview and Implications for Diurnal Sampling E. Nowottnick et al. 10.3390/atmos13091439
- Absorption closure in highly aged biomass burning smoke J. Taylor et al. 10.5194/acp-20-11201-2020
- Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study M. Mallet et al. 10.5194/acp-20-13191-2020
- A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1 – Climatology J. Ryoo et al. 10.5194/acp-21-16689-2021
- Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments P. Barrett et al. 10.5194/amt-15-6329-2022
- The impact of aerosols on stratiform clouds over southern West Africa: a large-eddy-simulation study L. Delbeke et al. 10.5194/acp-23-13329-2023
- Spatiotemporal Heterogeneity of Aerosol and Cloud Properties Over the Southeast Atlantic: An Observational Analysis I. Chang et al. 10.1029/2020GL091469
Latest update: 19 Nov 2024
Short summary
Boundary layer (BL) semi-direct effects in the remote SE Atlantic are investigated using LASIC field measurements and satellite retrievals. Low-cloud cover and cloud liquid water path decrease with increasing smoke loadings in the BL. Daily-mean surface-based mixed layer is warmer by 0.5 K, moisture accumulates near the surface throughout the night, and the BL deepens by 200 m, with LWPs and cloud top heights increasing, in the sunlit morning hours, as part of the smoke-altered BL diurnal cycle.
Boundary layer (BL) semi-direct effects in the remote SE Atlantic are investigated using LASIC...
Altmetrics
Final-revised paper
Preprint