Articles | Volume 19, issue 22
https://doi.org/10.5194/acp-19-13911-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-13911-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fundamentals of data assimilation applied to biogeochemistry
School of Earth Sciences, University of Melbourne,
Melbourne, Australia
Anna M. Michalak
Department of Global Ecology, Carnegie Institution for Science,
Stanford, USA
Frédéric Chevallier
Laboratoire des Sciences du Climat et de l'Environnement,
Gif-sur-Yvette, France
Viewed
Total article views: 5,170 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 30 Oct 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,072 | 1,029 | 69 | 5,170 | 97 | 80 |
- HTML: 4,072
- PDF: 1,029
- XML: 69
- Total: 5,170
- BibTeX: 97
- EndNote: 80
Total article views: 4,174 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Nov 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,504 | 611 | 59 | 4,174 | 82 | 72 |
- HTML: 3,504
- PDF: 611
- XML: 59
- Total: 4,174
- BibTeX: 82
- EndNote: 72
Total article views: 996 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 30 Oct 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
568 | 418 | 10 | 996 | 15 | 8 |
- HTML: 568
- PDF: 418
- XML: 10
- Total: 996
- BibTeX: 15
- EndNote: 8
Viewed (geographical distribution)
Total article views: 5,170 (including HTML, PDF, and XML)
Thereof 5,300 with geography defined
and -130 with unknown origin.
Total article views: 4,174 (including HTML, PDF, and XML)
Thereof 4,303 with geography defined
and -129 with unknown origin.
Total article views: 996 (including HTML, PDF, and XML)
Thereof 997 with geography defined
and -1 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
36 citations as recorded by crossref.
- Variational regional inverse modeling of reactive species emissions with PYVAR-CHIMERE-v2019 A. Fortems-Cheiney et al. 10.5194/gmd-14-2939-2021
- Regional impacts of COVID-19 on carbon dioxide detected worldwide from space B. Weir et al. 10.1126/sciadv.abf9415
- Investigation of the renewed methane growth post-2007 with high-resolution 3-D variational inverse modeling and isotopic constraints J. Thanwerdas et al. 10.5194/acp-24-2129-2024
- Development of the tangent linear and adjoint models of the global online chemical transport model MPAS-CO2 v7.3 T. Zheng et al. 10.5194/gmd-17-1543-2024
- La surveillance des émissions anthropiques de CO2 depuis l’espace : un enjeu géopolitique émergent G. Broquet & F. Chevallier 10.4000/12de3
- Terrestrial carbon cycle model-data fusion: Progress and challenges X. Li et al. 10.1007/s11430-020-9800-3
- Was Australia a sink or source of CO<sub>2</sub> in 2015? Data assimilation using OCO-2 satellite measurements Y. Villalobos et al. 10.5194/acp-21-17453-2021
- NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations R. Plauchu et al. 10.5194/acp-24-8139-2024
- The potential of Orbiting Carbon Observatory-2 data to reduce the uncertainties in CO<sub>2</sub> surface fluxes over Australia using a variational assimilation scheme Y. Villalobos et al. 10.5194/acp-20-8473-2020
- Exploring the potential of history matching for land surface model calibration N. Raoult et al. 10.5194/gmd-17-5779-2024
- An Agenda for Land Data Assimilation Priorities: Realizing the Promise of Terrestrial Water, Energy, and Vegetation Observations From Space S. Kumar et al. 10.1029/2022MS003259
- Urban-scale variational flux inversion for CO Using TROPOMI total-column retrievals: A case study of Tehran N. Shahrokhi et al. 10.1016/j.atmosenv.2023.120009
- Regional CO<sub>2</sub> inversions with LUMIA, the Lund University Modular Inversion Algorithm, v1.0 G. Monteil & M. Scholze 10.5194/gmd-14-3383-2021
- CO anthropogenic emissions in Europe from 2011 to 2021: insights from Measurement of Pollution in the Troposphere (MOPITT) satellite data A. Fortems-Cheiney et al. 10.5194/acp-24-4635-2024
- National CO2budgets (2015–2020) inferred from atmospheric CO2observations in support of the global stocktake B. Byrne et al. 10.5194/essd-15-963-2023
- The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018 A. Petrescu et al. 10.5194/essd-13-2363-2021
- Quantifying and Reducing Uncertainty in Global Carbon Cycle Predictions: Lessons and Perspectives From 15 Years of Data Assimilation Studies With the ORCHIDEE Terrestrial Biosphere Model N. MacBean et al. 10.1029/2021GB007177
- The CO2 Human Emissions (CHE) Project: First Steps Towards a European Operational Capacity to Monitor Anthropogenic CO2 Emissions G. Balsamo et al. 10.3389/frsen.2021.707247
- Variational inverse modeling within the Community Inversion Framework v1.1 to assimilate <i>δ</i><sup>13</sup>C(CH<sub>4</sub>) and CH<sub>4</sub>: a case study with model LMDz-SACS J. Thanwerdas et al. 10.5194/gmd-15-4831-2022
- High-resolution modeling of gaseous air pollutants over Tehran and validation with surface and satellite data N. Shahrokhishahraki et al. 10.1016/j.atmosenv.2021.118881
- The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015 G. Monteil et al. 10.5194/acp-20-12063-2020
- A Comprehensive Assessment of Anthropogenic and Natural Sources and Sinks of Australasia's Carbon Budget Y. Villalobos et al. 10.1029/2023GB007845
- Interannual variability in the Australian carbon cycle over 2015–2019, based on assimilation of Orbiting Carbon Observatory-2 (OCO-2) satellite data Y. Villalobos et al. 10.5194/acp-22-8897-2022
- Toward High‐Resolution Global Atmospheric Inverse Modeling Using Graphics Accelerators F. Chevallier et al. 10.1029/2022GL102135
- The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies A. Berchet et al. 10.5194/gmd-14-5331-2021
- Carbon Flux Variability From a Relatively Simple Ecosystem Model With Assimilated Data Is Consistent With Terrestrial Biosphere Model Estimates G. Quetin et al. 10.1029/2019MS001889
- Evaluation of light atmospheric plume inversion methods using synthetic XCO2 satellite images to compute Paris CO2 emissions A. Danjou et al. 10.1016/j.rse.2023.113900
- Exploring uncertainty reduction in high-resolution methane emissions in Gippsland through in-situ data: A Bayesian inverse modeling and variational assimilation method S. Aghdasi et al. 10.1016/j.atmosres.2025.107911
- 3D modeling of generalized Newtonian fluid flow with data assimilation using the least-squares finite element method S. Averweg et al. 10.1016/j.cma.2022.114668
- Anthropogenic NOx Emission Estimations over East China for 2015 and 2019 Using OMI Satellite Observations and the New Inverse Modeling System CIF-CHIMERE D. Savas et al. 10.3390/atmos14010154
- Assessing the Impact of Atmospheric CO2 and NO2 Measurements From Space on Estimating City-Scale Fossil Fuel CO2 Emissions in a Data Assimilation System T. Kaminski et al. 10.3389/frsen.2022.887456
- A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions C. Gómez-Ortiz et al. 10.5194/acp-25-397-2025
- Development and evaluation of CO<sub>2</sub> transport in MPAS-A v6.3 T. Zheng et al. 10.5194/gmd-14-3037-2021
- Enhanced parallelization of the incremental 4D‐Var data assimilation algorithm using the Randomized Incremental Optimal Technique N. Bousserez et al. 10.1002/qj.3740
- Improved process representation of leaf phenology significantly shifts climate sensitivity of ecosystem carbon balance A. Norton et al. 10.5194/bg-20-2455-2023
- Data assimilation using an ensemble of models: a hierarchical approach P. Rayner 10.5194/acp-20-3725-2020
36 citations as recorded by crossref.
- Variational regional inverse modeling of reactive species emissions with PYVAR-CHIMERE-v2019 A. Fortems-Cheiney et al. 10.5194/gmd-14-2939-2021
- Regional impacts of COVID-19 on carbon dioxide detected worldwide from space B. Weir et al. 10.1126/sciadv.abf9415
- Investigation of the renewed methane growth post-2007 with high-resolution 3-D variational inverse modeling and isotopic constraints J. Thanwerdas et al. 10.5194/acp-24-2129-2024
- Development of the tangent linear and adjoint models of the global online chemical transport model MPAS-CO2 v7.3 T. Zheng et al. 10.5194/gmd-17-1543-2024
- La surveillance des émissions anthropiques de CO2 depuis l’espace : un enjeu géopolitique émergent G. Broquet & F. Chevallier 10.4000/12de3
- Terrestrial carbon cycle model-data fusion: Progress and challenges X. Li et al. 10.1007/s11430-020-9800-3
- Was Australia a sink or source of CO<sub>2</sub> in 2015? Data assimilation using OCO-2 satellite measurements Y. Villalobos et al. 10.5194/acp-21-17453-2021
- NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations R. Plauchu et al. 10.5194/acp-24-8139-2024
- The potential of Orbiting Carbon Observatory-2 data to reduce the uncertainties in CO<sub>2</sub> surface fluxes over Australia using a variational assimilation scheme Y. Villalobos et al. 10.5194/acp-20-8473-2020
- Exploring the potential of history matching for land surface model calibration N. Raoult et al. 10.5194/gmd-17-5779-2024
- An Agenda for Land Data Assimilation Priorities: Realizing the Promise of Terrestrial Water, Energy, and Vegetation Observations From Space S. Kumar et al. 10.1029/2022MS003259
- Urban-scale variational flux inversion for CO Using TROPOMI total-column retrievals: A case study of Tehran N. Shahrokhi et al. 10.1016/j.atmosenv.2023.120009
- Regional CO<sub>2</sub> inversions with LUMIA, the Lund University Modular Inversion Algorithm, v1.0 G. Monteil & M. Scholze 10.5194/gmd-14-3383-2021
- CO anthropogenic emissions in Europe from 2011 to 2021: insights from Measurement of Pollution in the Troposphere (MOPITT) satellite data A. Fortems-Cheiney et al. 10.5194/acp-24-4635-2024
- National CO2budgets (2015–2020) inferred from atmospheric CO2observations in support of the global stocktake B. Byrne et al. 10.5194/essd-15-963-2023
- The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018 A. Petrescu et al. 10.5194/essd-13-2363-2021
- Quantifying and Reducing Uncertainty in Global Carbon Cycle Predictions: Lessons and Perspectives From 15 Years of Data Assimilation Studies With the ORCHIDEE Terrestrial Biosphere Model N. MacBean et al. 10.1029/2021GB007177
- The CO2 Human Emissions (CHE) Project: First Steps Towards a European Operational Capacity to Monitor Anthropogenic CO2 Emissions G. Balsamo et al. 10.3389/frsen.2021.707247
- Variational inverse modeling within the Community Inversion Framework v1.1 to assimilate <i>δ</i><sup>13</sup>C(CH<sub>4</sub>) and CH<sub>4</sub>: a case study with model LMDz-SACS J. Thanwerdas et al. 10.5194/gmd-15-4831-2022
- High-resolution modeling of gaseous air pollutants over Tehran and validation with surface and satellite data N. Shahrokhishahraki et al. 10.1016/j.atmosenv.2021.118881
- The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015 G. Monteil et al. 10.5194/acp-20-12063-2020
- A Comprehensive Assessment of Anthropogenic and Natural Sources and Sinks of Australasia's Carbon Budget Y. Villalobos et al. 10.1029/2023GB007845
- Interannual variability in the Australian carbon cycle over 2015–2019, based on assimilation of Orbiting Carbon Observatory-2 (OCO-2) satellite data Y. Villalobos et al. 10.5194/acp-22-8897-2022
- Toward High‐Resolution Global Atmospheric Inverse Modeling Using Graphics Accelerators F. Chevallier et al. 10.1029/2022GL102135
- The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies A. Berchet et al. 10.5194/gmd-14-5331-2021
- Carbon Flux Variability From a Relatively Simple Ecosystem Model With Assimilated Data Is Consistent With Terrestrial Biosphere Model Estimates G. Quetin et al. 10.1029/2019MS001889
- Evaluation of light atmospheric plume inversion methods using synthetic XCO2 satellite images to compute Paris CO2 emissions A. Danjou et al. 10.1016/j.rse.2023.113900
- Exploring uncertainty reduction in high-resolution methane emissions in Gippsland through in-situ data: A Bayesian inverse modeling and variational assimilation method S. Aghdasi et al. 10.1016/j.atmosres.2025.107911
- 3D modeling of generalized Newtonian fluid flow with data assimilation using the least-squares finite element method S. Averweg et al. 10.1016/j.cma.2022.114668
- Anthropogenic NOx Emission Estimations over East China for 2015 and 2019 Using OMI Satellite Observations and the New Inverse Modeling System CIF-CHIMERE D. Savas et al. 10.3390/atmos14010154
- Assessing the Impact of Atmospheric CO2 and NO2 Measurements From Space on Estimating City-Scale Fossil Fuel CO2 Emissions in a Data Assimilation System T. Kaminski et al. 10.3389/frsen.2022.887456
- A CO2–Δ14CO2 inversion setup for estimating European fossil CO2 emissions C. Gómez-Ortiz et al. 10.5194/acp-25-397-2025
- Development and evaluation of CO<sub>2</sub> transport in MPAS-A v6.3 T. Zheng et al. 10.5194/gmd-14-3037-2021
- Enhanced parallelization of the incremental 4D‐Var data assimilation algorithm using the Randomized Incremental Optimal Technique N. Bousserez et al. 10.1002/qj.3740
- Improved process representation of leaf phenology significantly shifts climate sensitivity of ecosystem carbon balance A. Norton et al. 10.5194/bg-20-2455-2023
- Data assimilation using an ensemble of models: a hierarchical approach P. Rayner 10.5194/acp-20-3725-2020
Latest update: 14 Jan 2025
Short summary
This paper describes the methods for combining models and data to understand how nutrients and pollutants move through natural systems. The methods are analogous to the process of weather forecasting in which previous information is combined with new observations and a model to improve our knowledge of the internal state of the physical system. The methods appear highly diverse but the paper shows that they are all examples of a single underlying formalism.
This paper describes the methods for combining models and data to understand how nutrients and...
Altmetrics
Final-revised paper
Preprint