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Abstract. This article lays out the fundamentals of data as-
similation as used in biogeochemistry. It demonstrates that
all of the methods in widespread use within the field are spe-
cial cases of the underlying Bayesian formalism. Methods
differ in the assumptions they make and information they
provide on the probability distributions used in Bayesian cal-
culations. It thus provides a basis for comparison and choice
among these methods. It also provides a standardised nota-
tion for the various quantities used in the field.

1 Introduction

The task of improving current knowledge by considering ob-
served phenomena is a fundamental part of the scientific pro-
cess. The mechanics of the process are a matter for historians
of science and a matter of fierce debate, while its fundamen-
tal reliability is a matter for philosophers, literally a meta-
physical question. Here we are concerned with building and
using algorithms for the process. The step by step construc-
tion of such algorithms from agreed upon logical premises is
beyond our scope here but is masterfully presented by Jaynes
and Bretthorst (2003).

It is important to note at the outset the generality of the
machinery we will present, especially because many of the
common objections to the methods spring from misunder-
standings of this generality. For example, it is a common
complaint that data assimilation can improve a model but
cannot test it. The methods are, however, capable of consid-
ering multiple models and assigning probabilities to them; a
test of their relative performance.

At the outset we should settle some questions of termi-
nology. The phrases “data assimilation”, “parameter estima-

tion”, “inverse modelling” and “model–data fusion” are used
with overlapping meanings in the literature. “Inversion” is
most commonly used to describe improving knowledge of
the inputs of a model given observations of its output. The
term arises since the technique reverses the normal direction
of causality (Enting, 2002, p. 10). Data assimilation most
commonly refers to the correction of the trajectory of a run-
ning model given observations. There are many exceptions
to this categorisation and other distinctions could be made.
We will use the term data assimilation throughout but read-
ers should interpret the name broadly.

We are concerned with algorithms to improve the perfor-
mance of models through the use of data. The improvement
will come via knowledge of the state (quantities the model
calculates), boundary conditions (quantities we insert into
the model) or structure of the model. Performance will be
assessed by the model’s ability to reproduce observations,
especially those not included in the data assimilation algo-
rithm.

The application of data assimilation to biogeochemistry
has proceeded from informality to formal methods and from
small to larger problems. One can see the study of Fung et al.
(1987) as a data assimilation experiment. These authors ad-
justed respiration parameters in a simple biosphere model
so that the seasonal cycle of atmospheric CO2 concentration
better matched the observed seasonal cycle at some stations.
About 15 years later, Kaminski et al. (2002) performed a sim-
ilar study on a similar model with more stations and a formal
algorithm. We see similar developments in the estimation of
CO2 fluxes (e.g. Tans et al., 1990 vs Chevallier et al., 2010)
and ocean productivity (Balkanski et al., 1999 cf. Brasseur
et al., 2009).

Published by Copernicus Publications on behalf of the European Geosciences Union.



13912 P. J. Rayner et al.: Fundamentals of data assimilation

The flourishing of the general approach has also led to
a great diversification of methods, reflecting repeated bor-
rowings from other fields. This has been extremely fruitful,
but can be confusing for a novice. Our aim in this paper is
to reintroduce the fundamental theory and demonstrate how
these methods are implementations of that theory. We will
aim to tread a careful path between generality and simplicity.
If we succeed, a reader should be well-placed to understand
the relationships among the methods and applications pre-
sented later. We will also introduce a consistent notation that
is sufficiently general as to capture the range of possible ap-
plications.

The structure of the paper is as follows. In Sect. 2 we in-
troduce the general theory. There is no new material here,
but we need a basis for the subsequent discussion. Section 3
introduces a consistent notation. Section 4 presents an over-
all approach to the solution to the data assimilation problem
through the use of a simple example. Section 5 describes the
construction of inputs to the problem. Section 6 describes so-
lution methods and how they are special cases of the general
theory but take advantage of the circumstances of a particu-
lar problem. Section 7 describes some computational aspects
related to the solution of data assimilation problems. Finally,
Sect. 8 introduces a range of example applications which il-
lustrate the historical development of the field.

2 Data assimilation as statistical inference

In what follows we will not be using mathematically precise
language. We think the trade-off of ambiguity for simplicity
suits our introductory task. Some of the key concepts are in-
troduced in Tarantola and Valette (1982) and elaborated fur-
ther in Tarantola (1987). In addition, Evans and Stark (2002)
sought to unify the languages of applied mathematics and
statistics used to describe the methods. Jaynes and Bretthorst
(2003) gave a thorough exposition on the underlying ideas
while Tarantola (2005) provided a comprehensive treatment
of both motivations and methods. Other presentations that fo-
cus on particular applications include Kalnay (2003) for nu-
merical weather prediction, Rodgers (2000) for atmospheric
remote sensing, Enting (2002) and Bocquet et al. (2015) for
atmospheric composition, and Carrassi et al. (2018) for the
geosciences more generally.

2.1 Events and probability

For our purposes, we define an event as a statement about
the condition of a system. This is deliberately general; such
statements can take many forms. Examples include categor-
ical or discrete statements (e.g. “including isopycnal mixing
improves ocean circulation models”), logical propositions
(e.g. “increasing soil temperatures lead to increased soil res-
piration”) or quantitative statements like “the Amazon forest
is a sink of between 1 and 2 Pg C yr−1”. The choice of the

set of events we consider is the first one we make in setting
up any data assimilation problem. We require that any events
that are logically incompatible be disjoint (mutually exclu-
sive) and that the set of events be complete.1

The concept of probability is so simple and universal that
it is hard to find a definition that is more than a tautology. It is
a function mapping the set of events onto the interval [0,1].
Its simplest properties, often called the Kolmogorov axioms
(Jaynes and Bretthorst, 2003, Appendix A) reflect the defini-
tion of events, i.e that the probability of the whole domain is
1, and that the probability of the union of two disjoint events
is the sum of their individual probabilities. The most com-
mon case in natural science is learning about some numeri-
cal quantity like a rate constant or a flux. We term the set of
these quantities the “target variables” of the problem. They
are also called unknowns, parameters or control variables. In
this continuous case, events are usually membership of some
set (e.g. x ∈ (2,5)). If our target variables are continuous, we
can define a probability density function p (usually abbrevi-
ated PDF) such that the probability P that a target variable
x is in some region R is the integral of p over R. In one
dimension this simplifies to

p(x)= lim
δx→0

P(ξ ∈ (x,x+ δx))

δx
. (1)

2.2 Bayesian and non-Bayesian inference

At this point, any discussion of statistics bifurcates into two
apparently incompatible methodologies, roughly termed fre-
quentist and Bayesian. Debate between the two schools has
been carried on with surprising vigour. See Salsburg (2001)
for a general history and Jaynes and Bretthorst (2003) for
a partisan view. Characterising the two schools is far beyond
our scope here, especially as we will follow only one of them
in much detail, but since even the language of the methods is
almost disjoint it is worth introducing the new reader to the
major concepts.

Frequentists generally pose problems as the quest for some
property of a population. The property must be estimated
from a sample of the population. Estimators are functions
that compute these estimates from the sample. The design of
estimators with desirable properties (no bias, minimum un-
certainty, etc.) is a significant part of the technical apparatus
of frequentist inference. Often we seek a physical parameter.
This is not a bulk property but a single value that must be
deduced from imperfect data. Here we treat each experiment
as observing a member of a population so that we can use the
same apparatus.

Bayesian statisticians concern themselves with the state of
knowledge of a system. They regard the task of inference as

1This definition of event already takes us down one fork of the
major distinction in statistics roughly described as Bayesians vs.
frequentists. This is a Bayesian definition; a frequentist will usually
refer to an event as the outcome of an experiment.
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improving this state of knowledge. We generate knowledge
of some property of the system by applying some mathemati-
cal operation to the state of knowledge of the underlying sys-
tem. Although we may call this estimating some property of
the system, the calculations involved are quite different from
the estimators of frequentist statistics. As a practical example
a frequentist may estimate a mean by averaging their sample
while a Bayesian may calculate an integral over their proba-
bility density. It is also important to note that for a Bayesian
the state of knowledge does not necessarily come only from
the sample itself. This use of information external or prior to
the data is the most important practical difference between
the two methods. Throughout this paper we will generally
follow a Bayesian rather than frequentist approach. This rep-
resents the balance of activity in the field but is not a judge-
ment on their relative merits.

3 Towards a consistent notation

The notation in use in this field is as varied as the nomencla-
ture. This is unavoidable where similar techniques have been
developed independently to answer the needs of many differ-
ent fields. This diversity complicates the task for novices and
experts alike as they compare literature from different fields.
Producing a notation at once compact enough to be usable
and general enough to cover all cases is a difficult task. Ide
et al. (1997) made an attempt focused on numerical weather
and ocean prediction. Experience has shown their notation to
be sufficient for most practical cases and we have followed
it here as closely as possible. The notation does have an ex-
plicitly Bayesian flavour. For example we eschew the use of
hats to describe estimates because we regard estimation as
an operation on a probability density. The notation used in
this paper and the rest of the issue derives from Table 1 and
readers should refer to this table for definitions of symbols.

4 Fundamental Bayesian theory

In this section we will sketch the fundamental solution of the
inverse problem. This will motivate a more detailed descrip-
tion of the various inputs in the following section.

Tarantola (2005) states at the outset of his book that the
state of knowledge of a system can be described by a prob-
ability distribution or corresponding probability density. Our
task is to combine knowledge from measurements with pre-
existing knowledge on the system’s state to improve knowl-
edge of the system.2

The recipe for combining these two sources of knowledge
is traditionally introduced via conditional probabilities and
expressed as Bayes’ theorem (Laplace, 1774). Here we fol-

2Tarantola (2005) uses the term information instead of knowl-
edge. We avoid it here because it has a technical meaning.

low Tarantola (2005) and Jaynes and Bretthorst (2003), who
derive the machinery directly from the axioms of probability.

We postulate that the true state of the system is consistent
with our prior knowledge of it and the measurements we take.
The link between the system’s state and the observations is
created by an observation operator (often called a forward
operator).3 Both observations and observation operators are
imperfect and we describe the state of knowledge of them
both with probability densities.

The case for one target variable and one observation is de-
scribed in Fig. 1, slightly adapted from Rayner (2010). Fig-
ure 1a shows the joint probability distribution for the target
variable (blue rectangle) and the measured quantity (red rect-
angle). Our imperfect knowledge of the mapping between
them is shown by the green rectangle. In this simple case the
three PDFs are uniform, meaning all values within the inter-
val are equally likely.

The solution of the problem is the intersection or mul-
tiplication of the three PDFs. Adding the requirement that
the system state must take a value, we obtain the solution
(panel b) by projecting the joint PDF onto the x axis and nor-
malising it. We write the multiplication as

p(x,y)∝ p(x|xb)×p(y|yo)×p(y|H(x)), (2)

where we have extended the case with one variable and one
observation to the usual case where both are vectors. We gen-
erate the posterior distribution for x by integrating over pos-
sible values of the observed quantity

p(x)∝

∫
p(x,y)dy. (3)

The constant of proportionality follows from normalisation∫
p(x)dx = 1. The last term in Eq. (2) is the probability of

a value y given a value of the target variable x and is of-
ten termed the likelihood. We stress that the generated PDFs
are the most complete description of the solution. What we
usually think of as the estimated target variable xa is some
derived property of p(x), e.g. its mode or mean. Note that
if any PDF is mischaracterised, xa can correspond to a very
small probability, possibly even smaller than for xb. Such
a situation may remain unnoticed in the absence of indepen-
dent direct validation data for xa, as is currently the case for
global atmospheric inversions. This issue underlines the ne-
cessity to keep a clear link with the statistical framework, de-
spite the possible technical complexity of data assimilation
systems.

5 The ingredients

In this section we describe the various inputs to Eq. (2) along
with some closely related quantities.

3Rayner et al. (2010) refer to this as a model but here we reserve
that term for the dynamical evolution of the system.
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Table 1. Table of notation used throughout the issue. Borrows heavily from Ide et al. (1997) Appendix 1.

Basic notation

Symbol Definition Description

Bold Matrix
Bold and italic Vector∗

x Target variables for assimilation
z Model state variables
y Vector of observed variables
θ Hyperparameters (see Sect. 5.6)
J Cost function
U(x,xt) Uncertainty covariance of x around some reference point xt

C(x) Uncertainty correlation of x
p(x) Probability density function evaluated at variable x
G(x,µ,U) Multivariate normal (Gaussian) distribution with mean µ and covariance U
H Observation operator mapping target or model variables onto observables
H ∇xy Jacobian of H , often used in its place, especially for linear problems
M Model to evolve state vector from one time step to the next
M ∇xx

f Jacobian of M
(·)a Analysis or posterior
(·)b Background or prior
(·)f Forecast
(·)g (First) guess in iteration
(·)t True
(·)o Observed
δ Increment

Some useful shortcuts

Symbol Definition Description

d y−H(z) Innovation
U(x) Uncertainty covariance of x about its own mean, i.e. the true uncertainty covariance
B U(xb) Prior uncertainty covariance
Q U(xf,xt) Forecast uncertainty (see Sect. 6.5)
R U(y−H(zt)) Uncertainty of observations around prediction given true state (often abbreviated obser-

vational uncertainty)
A U(xa) Posterior uncertainty covariance

∗ We diverge here from Ide et al. (1997) for consistency with the Copernicus convention for mathematical notation.

5.1 Deciding on target variables

It is important at the outset to distinguish between target vari-
ables x and state variables z. Target variables are the set of
quantities we wish to learn more about in the assimilation.
State variables are the set of quantities calculated by a model.
As an example, a chemical transport model may have spec-
ified inputs of various tracers and will calculate the evolu-
tion of those (and other) tracers subject to atmospheric trans-
port and chemical transformation. We will frequently wish
to learn about the inputs but not about the concentrations. In
that case the inputs are target variables while the concentra-
tions are state variables. We might also choose to learn about
the concentrations in the assimilation, in which case they be-
come both state and target variables.

Although not usually considered part of the problem, the
decision on target variables preconditions much of what fol-
lows. In general the target variables should include anything
which is important to the behaviour of the system and is not
perfectly known. A common misunderstanding is to limit the
target variables to the smallest possible set. This is risky for
three reasons.

1. We often wish to calculate the uncertainty in some pre-
dicted quantity. We may inadvertently eliminate a tar-
get variable whose uncertainty contributes to that of our
quantity of interest.

2. We are not always capable of guessing in advance which
target variables will be well-constrained by the assimi-
lation. We should let the observations determine which
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Figure 1. Illustration of Bayesian inference for a system with one
target variable and one observation. Panel (a) shows the joint prob-
ability distribution for target variable (x axis) and measurement
(y axis). The light-blue rectangle (which extends to infinity in the y
direction) represents the prior knowledge of the target variable (uni-
formly distributed between −0.2 and 0.2). The light-red rectangle
(which extends to infinity in the x direction) represents the knowl-
edge of the true value of the measurement (uniformly distributed
between 0.8 and 1.2). The green rectangle (extending to infinity
along the one-to-one line) represents the state of knowledge of the
observation operator. The observation operator is a simple one-to-
one mapping represented by the heavy green line. The black trian-
gle (the intersection of the three PDFs) represents the solution as the
joint PDF. Panel (b) shows the PDF for target variables obtained by
projecting the black triangle from (a) onto the x axis (i.e. integrat-
ing over all values of the observation). Figure modified from Rayner
(2010).

variables can be constrained rather than guessing in ad-
vance (Wunsch and Minster, 1982).

3. If a target variable that should be important for explain-
ing an observation is removed, the information from
that observation may contaminate other target variables
(Trampert and Snieder, 1996; Kaminski et al., 2001).

This usually happens when we limit the detail or reso-
lution in our target variables.

These considerations push us towards complex rather than
simple models. A common critique is that we will overfit
the data. This can certainly happen but will be revealed by
proper consideration of the posterior uncertainty. We can al-
ways post-treat the target variables to seek combinations with
lower uncertainty (Wunsch and Minster, 1982). An example
is aggregating a gridded field to lower resolution, which is
often better constrained by the observations. It is possible,
especially for approximate methods and nonlinear models,
that overfitting may not be reflected in higher uncertainty.

Point three above has been the subject of much work in
the flux inversion community in which our target variables
are gridded surface fluxes of some atmospheric tracer. Of-
ten we group or aggregate grid cells into regions and as-
sume the flux pattern inside these regions is perfectly known.
Our target variables comprise multiples or scaling factors for
these patterns. Kaminski et al. (2001) showed that incorrect
specification of these patterns led to errors in the retrieved
multipliers. Following Trampert and Snieder (1996) such er-
rors are known as aggregation errors. Kaminski et al. (2001)
proposed an algorithm for deweighting observations most
strongly contaminated by aggregation errors. The more com-
mon solution is to solve at higher resolution (see Sect. 7.1).
Bocquet (2005) pointed out some limitations of this ap-
proach with the information from observations being focused
more tightly around observing sites as resolution increased.
(Rodgers, 2000, Sect. 3.2.1) also noted an increased im-
pact of the prior as more detail in the target variables meant
that more remained unobserved. This has led to various ap-
proaches to designing structures for the target variables con-
sistent with the capabilities of the observing system. Wu et al.
(2011), Turner and Jacob (2015), and Lunt et al. (2016) chose
different methods for doing this with Lunt et al. (2016) show-
ing how to include the uncertainty in the choice of target vari-
ables in their assimilation.

We use an example to illustrate the process. Bodman et al.
(2013) used the simple carbon cycle–climate model MAG-
ICC (Meinshausen et al., 2008) and historical observations
of temperature and CO2 concentration to estimate the global
mean temperature and integrated carbon uptake for 2100.
The steps involved in choosing which parameters of MAG-
ICC to use as target variables were as follows.

1. Decide on a quantity of interest. This will be driven by
the science question we are addressing, e.g. the global
mean temperature in 2100 or the biospheric carbon up-
take of North America. Often it will not be a target vari-
able but the result of a forecast or diagnostic calculation.

2. Use sensitivity analysis to find variables to which the
quantity of interest is sensitive (e.g. Moore et al., 2012).
This may often include forcings that are usually ne-
glected. It is often a brute force calculation performed
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by changing the variable a small amount, though the ad-
joint analysis discussed in Sect. 7.1 can also be used.

3. Generate prior PDFs for the most sensitive variables
and, with these, calculate the prior PDF in the quantity
of interest generated by each potential target variable.
This and the previous steps should never be separated;
the sensitivity to a given target variable is best expressed
in uncertainty units for that variable. This provides a
common basis for comparing sensitivities of different
variables in different units. For example, Bodman et al.
(2013) used realisations of the simple climate model
MAGICC to calculate the contribution of uncertainties
in model parameters (such as climate sensitivity or car-
bon cycle feedback parameters) to uncertainty in tem-
perature in 2100.

4. Target the most important variables for our quantity of
interest with the cut-off being computationally driven.
This led Bodman et al. (2013) to choose a set of 11 tar-
get variables.

It is noteworthy how much calculation may be required be-
fore we start an assimilation.

5.2 Possible prior information

The PDF for the prior p(x|xb) should reflect whatever infor-
mation we have about the quantity before a measurement is
made. This is not always easy given that science is in con-
tinual dialogue between existing knowledge and new mea-
surements and it is likely that measurements quite similar to
the ones we are about to use have already informed the prior.
We should also use any information we have, even if this is
only obvious constraints such as positivity. Some of the re-
luctance to use Bayesian methods comes from the possible
impact of the prior PDF on the posterior. This influence can
be subtle. For example, if we wish to constrain some phys-
ical value K and we approach this by solving for a scaling
factor s so that sK appears in our physical problem. We can
reasonably expect that s is positive. Choosing a uniformly
distributed random positive s is far more likely to increase
rather than decrease the magnitude of sK compared to K .
Solving for log(s) as a target variable means we can make
increase or decrease equally likely. This was first noted by
Jeffreys (1939) and is explained in more detail in Jaynes and
Bretthorst (2003) Sect. 6.15.

In practice, prior information is most often taken from a
model providing a mechanistic or process-based representa-
tion of the system (e.g. Gurney et al., 2002). The advantage
of this approach is that it explicitly incorporates scientific un-
derstanding of the functioning of the system into the data as-
similation process. Further, model outputs can easily be tai-
lored to the data assimilation we are performing, e.g. prior
information can be provided at whatever time and space res-
olution we need. The disadvantage is that many alternate rep-
resentations often exist, and that the choice among them can

have a major and scale-dependent influence on the final PDFs
(e.g. Lauvaux et al., 2012; Carouge et al., 2010a), while the
relative merits of such alternate priors is difficult to objec-
tively and quantitatively determine when no ground truth is
available. The availability of ground truth allows one to draw
the statistics of model performance, but not necessarily di-
rectly at the spatial and temporal scales of the prior informa-
tion. In this case, one needs to study how the uncertainties
of the target variables change as they are aggregated or dis-
aggregated. These scaling properties are controlled by uncer-
tainty correlations (e.g. Chevallier et al., 2012). The param-
eters that encapsulate this prior information (such as uncer-
tainty magnitudes or correlation lengths) are also imperfectly
known and Sect. 5.6 describes how they can be incorporated
into the formalism. Michalak et al. (2017) describes how they
may be diagnosed from the assimilation system.

Alternatives that reduce the reliance on potentially subjec-
tive prior information do exist, where less restrictive prior
assumptions are made. The case of uniform priors described
above is one such example. One practical example in biogeo-
chemical data assimilation is the “geostatistical” approach
(e.g. Michalak et al., 2004), where the prior is described as a
function of unknown hyperparameters that link ancillary data
sets to the state, and where the prior uncertainty covariance is
formally described through spatial and temporal correlation
analysis that is based as strongly as possible on available ob-
servations. The advantage here is the replacement of possi-
bly subjective prior with empirical information (e.g. Gourdji
et al., 2012; Miller et al., 2013), while the disadvantage is
a more limited formal link to scientific process-based prior
understanding of the system.

It is important to note that the various approaches used to
construct the prior in data assimilation problems are not dis-
joint options, but rather can be thought of as points along a
continuum of options that reflect different choices about the
assumptions that a researcher is willing to make about the
system (e.g. Fang et al., 2014; Fang and Michalak, 2015).
The choice of prior is an expression of a choice of assump-
tions. With a careful framing of the specific question to be
addressed, and with an explicit examination of the assump-
tions inherent to different possible approaches, one can de-
sign a set of priors that optimally blends existing approaches
for a given application.

We also note that often much more attention is paid to the
parameters that define the location of the prior PDF (such as
the mode) while less attention is paid to its spread (e.g. the
variance in the case of Gaussian distributions). The two are
equally important as they both control the intersection of
PDFs in Fig. 1.

5.3 Observations

The PDF for the observation p(y|yo) represents our knowl-
edge of the true value of the measured quantity given the
measurement. The characterisation of this PDF is the task of
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metrology discussed by Scholze et al. (2017). An important
point to make at this stage is that verification of a measure-
ment means, for our purposes, verification of the PDF (in-
cluding its mean, i.e. studying possible systematic errors in
measurements). That is, it is more important that the PDF
we use properly represents the state of knowledge of the true
value than that the value is as precise as possible.

5.4 Observation operators

The PDF for the observation operator p(y|H(x)) represents
our state of knowledge of the true value of a modelled quan-
tity that arises from a given state of the system. It includes
any artefact caused by the resolution of the target variables
(Kaminski et al., 2001; Bocquet, 2005). It also includes un-
certain choices about model structure and numerical imple-
mentation as well as model parameters that are not included
among the target variables. The PDF for the observation op-
erator is often hard to verify because there are few cases
where we know precisely the relevant values of the system
state. Without this knowledge it is hard to ascribe a differ-
ence between the simulated and true value to an error in
the observation operator or an error in the prior. Frequently
we must abstract the observation operator and run it under
controlled conditions. An example is deliberate tracer re-
lease experiments (e.g. van Dop et al., 1998). Absent such
direct verification, calculations like sensitivity analyses or
ensemble experiments (e.g. Law et al., 1996) give incom-
plete guidance. It is important to note that if the PDFs are
Gaussian then the errors due to observations and observa-
tion operators may be added by adding their covariances
(Tarantola, 2005, Eq. 1.101). We frequently shorthand this
as the data uncertainty (or worse data error) when it is usu-
ally dominated by the observation operator. The resulting
PDF describes the difference we might expect between the
simulated result of the observation operator and the mea-
sured value. Thus analysis of the residuals (observation −
simulated quantity) can help test the assumed errors (e.g.
Desroziers et al., 2005; Kuppel et al., 2013). This forms part
of the diagnostics of data assimilation treated in Michalak
et al. (2017) and touched on in Sect. 5.6.

In some cases it may be possible to calculate uncertainty in
the observation operator in advance rather than diagnosing it
from the assimilation. If there is an ensemble of observation
operators available (e.g. Gurney et al., 2002) we can use the
spread among their outputs as a measure of spread, including
likely consistent or systematic errors arising from shared his-
tory and components (Bishop and Abramowitz, 2013). We
may also perturb parameters in the observation operator to
calculate their contribution to uncertainty.

5.5 Dynamical models

Although they are not one of the ingredients in Fig. 1, dy-
namical models are so common in this field that we include
them here. Many of the systems studied are dynamical in that
they involve the evolution of the system state through time.
We reserve the term dynamical model (often shorthanded to
model) for the mathematical function or computer system
that performs this evolution. We frequently consider the dy-
namical model to be deterministic, in which case the set of
system states as a function of time is a unique function of the
boundary and initial conditions. Some formulations relax this
condition, in which case we need a PDF for the model. In the
most common case of a first-order model, the PDF represents
our state of knowledge of the true state of the system at time
step i+ 1 given its state at time step i and perfect knowl-
edge of all relevant boundary conditions. As with observa-
tion operators this is hard to generate in practice since we
rarely know the preexisting state or boundary conditions per-
fectly. In repeated assimilation cases like numerical weather
prediction the statistics of many cases can give guidance. The
PDF can also be deduced from the analysis of the model–data
misfits when the statistics of the uncertainty of the model in-
puts and of the measurement errors are known (Kuppel et al.,
2013).

The boundary between the observation operator and the
dynamical model depends on our choice of target vari-
ables. If we consider only the initial state and assimilate
observations over a time window (the classic case of four-
dimensional variational data assimilation, 4D-Var) then the
dynamical model forms part of the mapping between the un-
knowns and the observations so is properly considered part
of the observation operator. If we include the system state
from the assimilation window (weak-constraint 4D-Var) then
the dynamical model enters as a separate object with its own
PDF. We will see shortly how this can be incorporated explic-
itly into the statistical framework. One confusing outcome of
this distinction is that the same model could play the role of
an observation operator or a dynamical model depending on
how it is used.

5.6 Hierarchical methods and hyperparameters

The solution to the data assimilation problem depends on
many inputs that are themselves uncertain. These include pa-
rameters of the input PDFs such as variances or choices of
observation operators. Frequently we regard these as fixed,
which is likely to underestimate the uncertainty of the esti-
mates. One solution is to incorporate these extra variables
into the data assimilation process. The problem is to deal
with the complex relationships such as the dependence of
the likelihood p(y|H(x)) on H as well as x. An explana-
tion and evaluation of methods for such problems is given by
Cressie et al. (2009); here we sketch the problem and note
some applications in the field.
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The chain rule of probabilities (Jaynes and Bretthorst,
2003, Eq. 14.5) can be stated as follows. For two events A
and B

P(A,B)= P(A|B)P (B). (4)

If the events are regions in parameter space we can develop
similar relations with PDFs. We can go further if there are
more than two parameters involved, building a hierarchy in
which we construct the joint PDF from a base probability and
a cascading set of conditional probabilities. For this reason
the approach is described as hierarchical.

In our case we extend our target variables x by a new
set of unknowns θ . θ contains quantities that may affect
our data assimilation problem but are not themselves tar-
get variables. Examples include parameters describing PDFs
(variances, correlation lengths, etc.), choices of dynamical
models, or observation operators or even the complexity of
the target variables themselves. Some elements in θ may
not even concern x such as the observational uncertainties
treated in Michalak et al. (2005).

For our case Eq. (4) becomes

P(x,θ)= P(x|θ)P (θ). (5)

We can then solve Eq. (2) for the extended set of target vari-
ables x,θ to obtain P(x,θ) and then if we are not interested
in θ may integrate Eq. (5) to remove it. θ may appear in sev-
eral places with Eq. (2). For example if we are unsure of the
uncertainty we should attach to the prior, we may include
parameters describing the uncertainty in the first term on the
right of Eq. (2). The same holds for the measurement process
and the second term on the right. Finally if we have more
than one potential observation operator we can include a col-
lection of these in the third term on the right.

A prototype of this approach was given by Michalak et al.
(2005). They included parameters describing R (often called
hyperparameters) in an atmospheric flux assimilation. While
they did not solve for the PDF of these hyperparameters, they
did calculate the mode of their distribution and recalculated
the distributions of fluxes accordingly. This calculation did
not include the impact of uncertainties in the hyperparame-
ters on uncertainties in the fluxes. Michalak et al. (2005) and
Wu et al. (2013) used the same approach to solve for corre-
lation length scales among flux errors in their assimilation.
Ganesan et al. (2014) took account of uncertainties in diago-
nal elements of B and R and temporal autocorrelations in R.
Ganesan et al. (2014) did consider the impact of uncertain-
ties in θ on estimated fluxes but at considerable computa-
tional cost. Finally Rayner (2017) considered the uncertainty
introduced by an ensemble of observation operators in the
Transport Model Comparison (TransCom) described in Gur-
ney et al. (2002).

Finally we should note that the hierarchical approach out-
lined here subsumes the description in Sect. 4. For this rea-
son, and as a continual reminder of the assumptions implicit

in selecting models and other inputs, Wikle and Berliner
(2007) write the whole methodology in hierarchical form.

6 Solving the assimilation problem

6.1 General principles

We saw in Sect. 4 that the solution of the assimilation prob-
lem consisted of the multiplication of three PDFs to generate
the posterior PDF. Before describing solution methods appli-
cable in various circumstances, we point out some general
consequences of Eq. (2). We begin by stressing that the pos-
terior PDF generated in Eq. (2) is the most general form of
the solution. Derived quantities are generated by operations
on this PDF.

Second, we see that the only physical model involved is
the observation operator. All the sophisticated machinery of
assimilation is not fundamental to the problem, although we
need it to derive most of the summary statistics.

Third there is no requirement that a solution exists or, if it
does, it can have vanishingly low probability. In Fig. 1 this
would occur if the PDFs were made tighter (smaller rectan-
gles for example) so that they did not overlap. This is a crit-
ical scientific discovery because it tells us our understanding
of the problem is not consistent with the data, notwithstand-
ing all the uncertainties of the inputs. It points out a boundary
of “normal science” as defined by Kuhn (1962).4 Michalak
et al. (2017) focus on diagnosing such inconsistencies.

6.2 Sampling methods

A general approach for characterising the posterior proba-
bility distribution of the target variables is to devise an ap-
proach for generating a large number of samples, or realisa-
tions, from this multivariate posterior distribution. We briefly
describe a few example approaches that fall under this um-
brella.

One approach to solving Eq. (2) is direct calculation of
the product for a large number of realisations drawn from the
constituent PDFs. Most simply, one can treat the PDF like
any other scalar function and map it. This is often achieved
by graphs or contour plots of a transformation of the PDF
such as the least-squares cost function (e.g. Kaminski et al.,
2002, Fig. 12). This mapping approach requires one com-
putation of the forward model for each parameter set, so
is infeasible for even moderately dimensioned problems. In
addition, most of these parameter sets will lie in very low-
probability regions.

A range of more sophisticated Monte Carlo sampling
approaches exist for multidimensional problems. The most
straightforward of these is direct sampling of the posterior
PDF, feasible for the case where this posterior PDF is suffi-
ciently simple to allow sampling from the distribution. This

4We thank Ian Enting for pointing this out.
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would be the case, for example, for multivariate Gaussian or
lognormal distributions.

In cases where direct sampling is not feasible, the strategy
often becomes one of sequentially sampling from a surro-
gate distribution (often termed the proposal distribution) in
such a way that the ensemble of samples ultimately repre-
sents a sample from the more complex target distribution.
Arguably, the simplest of the approaches falling under this
umbrella is rejection sampling. In this approach, a sample is
generated from a proposal distribution that is simple enough
to be sampled directly, and that sample is accepted or rejected
with a probability equal to the ratio between the likelihood of
the sampled value based on the target versus the proposal dis-
tribution, normalised by a constant (e.g. Robert and Casella,
2004).

A particularly useful class of Monte Carlo sampling strate-
gies are Markov chain Monte Carlo (MCMC) approaches. In
these approaches, the samples form a Markov chain, such
that each sample is not obtained independently, but rather as
a perturbation of the last previously accepted sample. Rather
than sampling the posterior PDF directly, one can also sam-
ple each of three PDFs sequentially (Fig. 1), e.g. with the cas-
caded Metropolis algorithm (see Tarantola, 2005, Sect. 6.11).

Another commonly used MCMC algorithm, the Gibbs
sampler, can be seen as a special case of the Metropolis–
Hastings algorithm where the target variables are sampled
individually and sequentially, rather than sampling the full
multivariate PDF of target variables as a single step (e.g.
Casella and George, 1992). An advantage of the Gibbs sam-
pler is that it can lead to higher rates of acceptance because
defining strategic approaches for generating perturbations is
more straightforward for univariate distributions. A disad-
vantage is that the overall computational cost can still be
higher due to the need to perform sampling multiple times
for each overall realisation.

The most important implementation detail for applying
MCMC approaches is the choice of the perturbation. Good
strategies are adaptive, lengthening the step size to escape
from improbable regions of the parameter space and short-
ening it to sample probable parts (noting the comments on
independence above).

Note that it takes at least one forward run for every
accepted point, meaning only inexpensive observation op-
erators can be treated this way. Furthermore the origi-
nal algorithm cannot be parallelised because each calcula-
tion requires the previous one. Some related techniques are
amenable to parallel computation (e.g. Jacob et al., 2011).
On the other hand MCMC makes few assumptions about the
posterior PDF, can handle a wide variety of input PDFs and
requires no modification to the forward model.

6.3 Summary statistics

We often describe the solution of the assimilation problem
using summary statistics of the posterior PDF. This can be

because we assume that the posterior PDF has an analytic
form with a few parameters that can describe it (e.g. the mean
and standard deviation of the Gaussian) or because we need
a numerical representation for later processing or compari-
son. This nearly universal practice is valuable but requires
care. For example, consider a target variable in the form of
a time series. We can represent the mode of the posterior PDF
as a line graph and the posterior uncertainty as a band around
this line. The true time series is a realisation drawn from
within this band. Any statements about the temporal stan-
dard deviation of the true time series must be based on PDFs
generated from these realisations. These estimates will gen-
erally yield larger variability than that from our most likely
realisation.

The linear Gaussian case is so common that it deserves ex-
plicit treatment, however, provided the caveat above is borne
in mind.

6.4 The linear Gaussian case

If H is linear and the PDFs of the prior, data and model are
Gaussian then the posterior PDF consists of the multiplica-
tion of three Gaussians. We multiply exponentials by adding
their exponents so it follows that the exponent of the poste-
rior has a quadratic form and hence the posterior is Gaussian.

The Gaussian form for the inputs allows one important
simplification without approximation. We noted in Sect. 4
that the solution to the assimilation problem consists of find-
ing the joint posterior PDF for unknowns and observed quan-
tities and then projecting this into the subspace of the un-
knowns. As we saw in Sect. 4 we also calculate the posterior
PDF for y the observed quantity. If there are very large num-
bers of observations this is computationally prohibitive and
usually uninteresting. If the PDFs are Gaussian, Tarantola
(2005, Sect. 6.21) showed that the last two terms of Eq. (2)
can be combined into a single PDF G(H(x)−yo,R), where
R= U(H(x)− y)+U(yo

− y), i.e. by adding the two vari-
ances. The PDF now includes only the unknowns x and the
posterior PDF can be written

p(x|y)∝G(x,xb,B)×G(Hx,y,R). (6)

This generates a Gaussian for x whose mean and variance
can be calculated by a range of methods (Rodgers, 2000,
chap. 1). The posterior covariance A does not depend on xb

or yo so that one can calculate posterior uncertainties before
measurements are taken (Hardt and Scherbaum, 1994). This
is the basis of the quantitative network design approaches
described in Krause et al. (2008) and Kaminski and Rayner
(2017).

The largest computation in this method is usually the cal-
culation of H, which includes the response of every observa-
tion to every unknown. This may involve many runs of the
forward model. Once completed, H is the Green’s function
for the problem and instantiates the complete knowledge of
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the resolved dynamics. It enables a range of other statistical
apparatuses, e.g. Michalak et al. (2005) or Rayner (2017).

Following the introduction of formal Bayesian methods
to atmospheric assimilations by Enting et al. (1993, 1995),
these analytical methods became the most common method
for this field. Rayner et al. (1999), Bousquet et al. (2000),
Roy et al. (2003) and Patra et al. (2005, 2006) used repeated
forward runs of a single transport model while the series of
papers from TransCom (Gurney et al., 2002, 2003; Law et al.,
2003; Gurney et al., 2004; Baker et al., 2006) used repeated
runs of an ensemble of models. Meanwhile Kaminski et al.
(1999a, b), Rödenbeck et al. (2003), Peylin et al. (2005), Ger-
big et al. (2009), Lauvaux et al. (2009), Turnbull et al. (2011),
Gourdji et al. (2012), Fang et al. (2014), Fang and Michalak
(2015), Lauvaux et al. (2012) and Schuh et al. (2013) (among
many others) used various forms of a transport model in re-
verse mode. These calculate the same Jacobian but require
one run per observation rather than per unknown. The ad-
vent of more atmospheric data (especially satellite measure-
ments of concentration) and the need for a higher resolution
of unknowns have seen these methods largely replaced by the
matrix-light methods described in Sect. 7.1.

6.5 Dynamically informed priors: the Kalman filter

A common case in physical systems has the state of the sys-
tem evolving according to some dynamical model M . This
is usually (though not necessarily) some form of first-order
differential equation. In such a case a natural algorithm for
constraining the evolution of the system with data is as fol-
lows.

1. At any time step n our knowledge of the system is con-
tained in the probability distribution p(xn).

2. Calculate a probability distribution for the new state
of the system p(xf,n+1) using the dynamical model M
where the superscript f (forecast) indicates the applica-
tion of the dynamical model.

3. Use p(xf,n+1) as the prior PDF for the assimilation step
described in Sect. 4.

4. This yields a posterior PDF p(xn+1) which we use as
the input for the next iteration of step 1.

For the simplest case of linear M and H with Gaussian
PDFs the algorithm was derived by Kalman (1960). The most
difficult step is the generation of p(xf,n). For the original
Gaussian case where p(xn)=G(xn,Bn) this is given by

p(xf,n)=G(M(xn),MBnMT
+Q), (7)

where Q, the forecast error covariance, represents the un-
certainty added to the state of the system by the model it-
self, i.e. not including uncertainties in the state. The ma-
trix product in Eq. (7) makes this approach computationally

intractable for large numbers of unknowns and various ap-
proaches have been tried using a well-chosen subspace. The
ensemble methods discussed in Sect. 7.3 have generally sup-
planted these. This also holds for nonlinear variants of the
system.

The original conception of the Kalman filter was for dy-
namical control in which the state of the system is continually
adjusted in accordance with arriving observations. For data
assimilation applied to biogeochemistry our motivation is to
hindcast the state of the system and, optionally, infer some
underlying constants (e.g. Trudinger et al., 2007, 2008). A
consequence of making inferences at each time separately is
that the system may be forced to follow an erroneous obser-
vation. For a hindcast we can counter this by expanding our
set of unknowns to include not only the current state but also
the state for several time steps into the past, and therefore to
smooth their previous analyses. This technique is known as
the Kalman smoother (Jazwinski, 1970) and also exists in en-
semble variants (Evensen, 2009) and in variational ones (see
Sect. 7.1). Evensen (2009) also showed that the Kalman fil-
ter described above is a special case of the Kalman smoother
with only one time level considered.

Note that by default, the time series of the maximum a pos-
teriori estimates is not physically consistent; e.g. it does not
conserve tracer mass from one assimilation step to another.
However, the time series of the full PDFs includes trajecto-
ries that are physically consistent.

7 Computational aspects

Much of the computational machinery of data assimilation
aims to calculate various summary statistics of the posterior
PDF. The utility of this approach depends on whether these
parameters accurately summarise the posterior PDF. It is best
to choose the target summary statistic based on knowledge
of the posterior PDF; there is no point estimating two pa-
rameters if the posterior distribution is described by only one
(e.g. the Poisson distribution). Here we limit ourselves to dis-
cussions of the two most common parameters: the maximum
a posteriori estimate and the posterior covariance. Solving for
these parameters does not itself assume a Gaussian posterior
but we often do assume such normality.

7.1 Iterative solution for the mode: variational methods

The mode of the posterior PDF is the value of the unknowns
that maximises the posterior probability. It is often sum-
marised as the maximum a posteriori or MAP estimate. If
p is a product of exponentials then we can write

p(x)∝ e−J (x). (8)
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Then maximising p is equivalent to minimising J .5 In the
linear Gaussian case J is quadratic so minimising it is termed
a least-squares solution. It is perhaps unfortunate that many
treatments of data assimilation start from the discussion of
a least-squares problem and thus hide many of the assump-
tions needed to get there.

The minimisation of J takes us into the realm of numerical
methods, beyond our scope. From the numerical viewpoint
J is a scalar function of the unknowns x. Minimising J is
a problem in the calculus of variations and so the methods
are commonly termed variational.

The quadratic form is sufficiently common to warrant
more development. From Eq. (6), J takes the form

J (x)=
1
2

[
(x− xb)TB−1(x− xb)

+(H(x)− yo)TR−1(H(x)− yo)
]
. (9)

Most efficient minimisation algorithms require the gradient
of J (x) (∇xJ ). In general these gradients are precisely cal-
culated by the use of adjoint methods (Griewank, 2000), but
they involve the analytical derivation of each line of code
of H beforehand. The only matrices left that are potentially
large in this approach are B and R.

7.2 Calculation of posterior uncertainty

Any reasonable summary of a posterior PDF will involve
a parameter describing its spread as well as location. This
spread almost always has a higher dimension than the mode
because it must describe the joint probabilities of parameters.
This immediately raises a problem of storage and computa-
tion because even moderate assimilation problems may in-
clude 100 000 unknowns for which representation of the joint
PDF is intractable. In purely Gaussian problems it can be
shown that the Hessian or second derivative∇2

xJ evaluated at
the minimum is the inverse covariance of the posterior PDF.
This is promising given that many gradient-based algorithms
for minimisation calculate low-rank approximations of the
Hessian (Meirink et al., 2008; Bousserez et al., 2015). Unfor-
tunately they usually commence with the largest eigenvalues
of the Hessian corresponding to the lowest eigenvalues (best-
constrained parts) of the covariance. When convergence is
achieved we are left with a subspace of the unknowns for
which we can comment on the posterior uncertainty and ig-
norance beyond this. Properly we should restrict analysis of
the results to this limited subspace but it usually does not
map conveniently onto the physical problem we are studying
(Chevallier et al., 2005).

An alternative approach is to generate an ensemble of
modes using realisations of the prior and data PDFs (Fisher,
2003; Chevallier et al., 2007). The resulting realisations of

5We cannot always write the PDFs this way, e.g. the uniform
PDFs in Fig. 1. In such cases the mode may not be defined.

the posterior PDF can be used as a sample for estimating pop-
ulation statistics. For Gaussian problems it can be shown that
the sample covariance so generated is an unbiased estimator
of the posterior covariance. For non-Gaussian problems we
can use the ensemble of realisations to estimate a parame-
ter representing the spread of the distribution or calculate an
empirical measure (commonly the ensemble standard devia-
tion).

7.3 The ensemble Kalman filter

The main limitations of the traditional Kalman filter for data
assimilation are its assumption of Gaussian PDFs, the re-
quirement for linear M and H , and the difficulty of pro-
jecting the state covariance matrix forward in time. The en-
semble approach described in Sect. 7.2 can also be used to
circumvent these problems. The hierarchy of approaches is
reviewed in Chen (2003). The most prominent (and most
closely related to the original) is the ensemble Kalman fil-
ter (EnKF) (Evensen, 2003, 2009). Instead of exactly repre-
senting the PDF by its mean and covariance we generate an
ensemble of realisations. We replace Eq. (7) by advancing
each realisation with the dynamical model then perturbing
the result with noise generated from Q. We then update each
ensemble member using the Gaussian theory described in
Sect. 6.4. Equation (6) shows that, as well as a prior estimate
(for which we use the ensemble member), we need obser-
vations, an observational covariance and a prior covariance.
The prior covariance we calculate from the ensemble itself.
The observational covariance we assume. In the simplest ver-
sion of the EnKF we do not use the observations directly but
rather perturb these with the observational noise. More re-
cent versions (e.g. Tippett et al., 2003) avoid perturbing the
observations but produce the same posterior uncertainty.

Computationally we need to run a dynamical model for
each realisation of the ensemble. This differs from Eq. (7) for
which we need a run of the dynamical model for every un-
known. Another advantage is that, while Eq. (7) is exact only
for linear models, the ensemble method may capture nonlin-
ear impacts on the state covariance. The biggest disadvantage
is the sampling problem for the posterior PDF. The limited
ensemble size introduces errors in the magnitudes of the vari-
ances and spurious correlations among state variables. Often
the covariance must be inflated ad hoc to prevent the ensem-
ble from collapsing to an artificially small variance. Similarly
the spurious correlations between, for example, spatially sep-
arated points mean that observations can artificially influence
target variables at long distances. This is handled by limiting
the range of influence of observations (see Houtekamer and
Zhang, 2016, for a review of these techniques for numerical
weather prediction), but this fix has also unwanted effects at
short distances and is questionable for long-lived tracers (e.g.
Miyazaki et al., 2011).
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7.4 Combining filtering and sampling: the particle
filter

Particle filters or sequential Monte Carlo methods relax the
assumptions inherent in the EnKF. Like the EnKF, the par-
ticle filter samples the underlying PDFs with a series of re-
alisations rather than propagating the mean and variance of
the PDF. There are steps in the EnKF that assume Gaussian
probability distributions and the particle filter avoids these,
seeking to fit the true underlying PDF. We parallel the de-
scription of the Kalman filter algorithm (Sect. 6.5) to high-
light the differences.

1. At any time step n our knowledge of the system is con-
tained in the probability distribution p(xn). Generate
a set of realisations (usually called particles) xni drawn
from p(xn).

2. Propagate each realisation forward in time using the dy-
namical modelM to generate realisations of the forecast
state xM,n+1

i .

3. Account for the uncertainty in the dynamical model by
perturbing xM,n+1

i according to the model PDF to gen-
erate realisations xf,n+1

i consistent with the dynamical
model and its uncertainty.

4. For each xf,n+1
i , generate the simulated observations yi

using the observation operatorH then evaluate the PDF
for the observations p(y) at the point yi ; these proba-
bilities act as weights for xf,n+1

i .

5. Using some numerical procedure with inputs of xf,n+1
i

and p(yi) generate a posterior PDF p(xn+1), which we
use as the prior PDF for the next iteration.

We see that the last three steps mirror the multiplication
of PDFs described in Eq. (2). Also, the difference between
the EnKF and particle filter lies chiefly in how we generate
the posterior PDF from the ensemble of forecast states; the
EnKF uses the linear Gaussian approximation while the par-
ticle filter uses some kind of sampling. Thus the particle filter
is a hybrid of the Kalman filter and sampling approaches.

The relaxation of the Gaussian assumption is at once
a strength and weakness of the particle filter. It can handle
more complex PDFs than the EnKF but it also requires many
more samples because it samples the posterior PDF rather
blindly while the EnKF is guided by the Kalman update step
into regions of high probability. This difference has meant
that, while the EnKF has been used successfully on some
very large problems (such as numerical weather prediction)
the particle filter has been limited to the same problem sizes
as the approaches described in Sect. 6.2. More recent de-
velopments such as the marginal particle filter (Klaas et al.,
2005) or the equivalent-weights particle filter (Ades and van
Leeuwen, 2015) try to overcome the sampling problem by

introducing additional steps for the resampling of the parti-
cles.

An overview of the principal ideas of particle filtering and
improvements upon the basic filter is given by Doucet et al.
(2001) while van Leeuwen (2009) reviews its application in
geophysical systems. Stordal et al. (2011) point to some fur-
ther generalisations which may combine advantages of the
EnKF and particle filter.

7.5 Time window

A common feature of biogeochemical systems is a large
range of timescales. For example, terrestrial models may in-
clude both photosynthesis (sub-seconds) to forest succession
(centuries). Slow processes often couple weakly to instanta-
neous observations so they must be constrained by long ob-
servational series. This can make the problem computation-
ally intractable. A common solution is to break the problem
into shorter assimilation windows. This is different from the
case of numerical weather prediction where the main consid-
eration is the need for a new forecast every few hours and
the advantage that the dynamical model can be considered
perfect for short enough times.

The choice of assimilation window for biogeochemical ap-
plications is guided by several factors.

1. Computational cost. If our target variables change with
time, then longer assimilation windows imply higher di-
mensions for x with corresponding space requirements.
Any scheme that requires multiple runs over the assim-
ilation window (such as the EnKF or iterative methods)
will also take longer.

2. Sensitivity of observations to target variables. These of-
ten decrease with time, especially for initial conditions.
Once they become either too small or too unreliable (be-
cause of accumulating model error), there is little added
value in assimilating observations further into the fu-
ture. We may thus break the problem into several paral-
lel assimilations.

The first point above means the assimilation window must
also consider the time resolution for which we wish to solve.
If we believe the value of some physical parameter only holds
for a finite time (e.g. a month) there is little point exposing
it to observations several years later. In practice the assimila-
tion window is usually set by a trade-off between computa-
tional constraints and the timescale of the slowest processes
studied.

8 Historical overview

Throughout this paper we have adopted a thematic structure.
Here we switch views to a narrative description. This is partly
to situate the various methods we have described but also to
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give some signposts for the future. We cannot hope to be ex-
haustive, nor to trace the rise and fall of each method. Rather,
we will identify drivers for these developments and show ex-
amples of how they have guided the field. Our intention is to
support the rest of the paper rather than provide a compre-
hensive review.

We can identify four major drivers for the development of
biogeochemical data assimilation:

1. development of the underlying methods and their per-
colation into the field,

2. rise in the scale and complexity of models and data sets,

3. rise in computational power,

4. diversifying needs within and beyond science.

These drivers do not always pull in the same direction,
e.g. increases in scale may require simplification of tech-
niques while computational power may allow more so-
phistication. Different practitioners will also make different
choices faced with the same trade-offs so our narrative is not
a single thread but some large-scale patterns are evident.

One of the first clearly recognisable applications of data
assimilation to biogeochemistry (Bolin and Keeling, 1963)
used a set of measurements of CO2 concentrations to esti-
mate the meridional diffusion of this gas and the distribution
of its sources. It is now clear that the assumptions of Bolin
and Keeling (1963) were wrong but, to quote Keeling (1998),
“our results could not be seriously challenged, however, until
digital computers, atmospheric circulation models, and con-
siderably more CO2 data all became available two decades
later”.

Bolin and Keeling (1963) confronted the problem that in-
formation is generally lost in the transformation of the in-
puts we seek to the outputs we observe. Approaches to this
problem have guided the field since. Other fields face the
same problem. Atmospheric remote sensing (Rodgers and
Walshaw, 1966) and seismic studies (Backus and Gilbert,
1968) addressed it in related fields and their approaches, re-
fracted through later developments, would eventually enter
biogeochemistry. Approaches can be roughly divided into
two classes: identifying and limiting the solution to those
parts constrained by the data or the addition of ancillary in-
formation. The former approach is exemplified by the studies
of Brown (1993, 1995), who used the singular value decom-
position to establish flux patterns most strongly projected
onto the data and limited her analysis to those components.
Later studies which intentionally limited the number of un-
knowns (e.g. Fan et al., 1998; Gloor et al., 2000) can be re-
garded as less formal examples of this approach while bear-
ing in mind the caution of Wunsch and Minster (1982) about
allowing the data to choose the subspace of unknowns we
constrain. Other approaches considered the observability of
target variables by the available data. Target variables could
be aggregated where they were not individually constrained

sufficiently. Manning et al. (2011) aggregated pixels in their
flux assimilation until they reached some threshold of ob-
servability while Wu et al. (2011) included observability as
a design criterion for their choice of target variables.

The addition of ancillary information is frequently termed
regularisation since its practical purpose is to limit implausi-
ble solutions in poorly constrained parts of parameter space.
For most problems, solving inverse problems meant solving
a version of Eq. (9) which ignored the first term on the right-
hand side. Regularisation consisted of adding some other
term, which penalised undesirable solutions. Possibilities in-
cluded “shrinkage estimators” which penalised the overall
size of the solution (Shaby and Field, 2006), or smoothing
operators, which penalised rapid variations in the solution
(e.g. Enting, 1987; McIntosh and Veronis, 1993).

The importation of the explicit Bayesian methods which
we have reviewed here largely supplanted the alternative
regularisation methods, though some studies (e.g. Krakauer
et al., 2004; Issartel, 2005; Manning et al., 2011; Vanoye and
Mendoza, 2014) followed other approaches. Also, the geo-
statistical methods introduced into the field by Michalak et al.
(2004) remain in use (e.g. Gourdji et al., 2008; Miller et al.,
2013). Bayesian methods entered biogeochemistry through
atmospheric inverse studies (Enting et al., 1993, 1995). Most
work since has elaborated different methods of solution or
forms of prior knowledge. Almost all methods described in
Sect. 6 have found some application. Often a method will be
tried and left until an algorithmic advance or computational
improvement makes it feasible.

Classical analytical methods (Sect. 6.4) were the first
workhorse for flux assimilations of inert tracers like CO2
where the problem is linear. They are still widely used (e.g.
Fang et al., 2014; Fang and Michalak, 2015; Henne et al.,
2016; Saeki and Patra, 2017; Chen et al., 2017; Shiga et al.,
2018; Wang et al., 2018). Originally Jacobians were gen-
erated with multiple forward runs, each run corresponding
to a desired source component. The development of ad-
joint transport models allowed one run per observation (e.g.
Kaminski et al., 1999a, b; Rödenbeck et al., 2003; Carouge
et al., 2010a, b; Thompson et al., 2011; Gourdji et al., 2012;
Fang et al., 2014; Fang and Michalak, 2015). This is more
efficient in the usual case of more unknowns than observa-
tions. The task of generating Jacobians is inherently paral-
lel so the ultimate limitation on these methods is the stor-
age and manipulation of large matrices. These limitations re-
cede with increasing computational power, and recent algo-
rithmic advances (e.g. Yadav and Michalak, 2013) have also
expanded their domain. Analytical methods are prized for
exact calculation of posterior covariance and so are widely
used in network design (e.g. Gloor et al., 2000; Patra et al.,
2003; Hungershoefer et al., 2010; Kaminski and Rayner,
2017). Matrix methods are also often used where more so-
phisticated statistics require more complex calculations such
as the hierarchical calculations of Michalak et al. (2004),
Ganesan et al. (2014) and Rayner (2017). They may also be
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used in weakly nonlinear forms where dimensionality is low
enough to permit finite difference sensitivity calculations for
each unknown (e.g. Kuppel et al., 2012; Bacour et al., 2015;
MacBean et al., 2018; Norton et al., 2018).

Once the number of both observations and target vari-
ables renders computation of Jacobians unfeasible, varia-
tional methods (Sect. 7.1) are a natural extension of the ma-
trix methods. This evolution is particularly evident in atmo-
spheric problems, driven by increases in satellite data and
a drive for higher resolution. Several groups have developed
similar systems around adjoints of atmospheric transport
models for global models (e.g. Rödenbeck, 2005; Chevallier
et al., 2005; Henze et al., 2007; Bergamaschi et al., 2007;
Liu et al., 2014; Wilson et al., 2014) and for regional mod-
els (e.g. Brioude et al., 2011; Broquet et al., 2011; Guer-
rette and Henze, 2015; T. Zheng et al., 2018). Most of the
effort has centred on improving knowledge of sources and
sinks (e.g. Basu et al., 2013; Escribano et al., 2016; Lu et al.,
2016; B. Zheng et al., 2018) but some has focused on improv-
ing state estimation for forecasting (e.g. Elbern and Schmidt,
2001; Wang et al., 2011; Park et al., 2016). To achieve high
resolution while maintaining global consistency, some au-
thors also combine methods, using one for the large-scale do-
main and, potentially, a different method for a nested domain.
This approach was introduced by Rödenbeck et al. (2009)
and has been recently used by Kountouris et al. (2018).

Versions of the Kalman filter are some of the natural
choices whenever the dynamical evolution of the model state
is explicitly included. Few atmospheric studies have ex-
ploited this capability, though Miyazaki et al. (2011) solved
for both fluxes and concentrations. More common is a ran-
dom walk or persistence model in which state variables
evolve without dynamical guidance. This was implemented
for atmospheric flux assimilation by Mulquiney et al. (1995,
1998) and Mulquiney and Norton (1998). Trudinger et al.
(2002a, b) later used the Kalman smoother to estimate global
fluxes from ice core concentration and isotopic measure-
ments. Peters et al. (2005) introduced the CarbonTracker sys-
tem using a simplified version of the EnKF and the global
atmospheric model TM5 (Krol et al., 2005). TM5’s global
nested capability has allowed a large suite of global and
regional applications for CarbonTracker (e.g. Peters et al.,
2010) for Europe or Kim et al. (2014) for Asia. Other ap-
plications of the EnKF to the estimation of surface sources
include Zupanski et al. (2007) and Feng et al. (2009). One
problem common to all these models was a potential time
delay between target variables and observations. This does
not fit immediately into the original formalism of Kalman
(1960). A solution was to keep several time steps in a mov-
ing assimilation window but one may need many steps if the
time delay is long. This can vitiate some of the computational
advantages of the EnKF.

Kalman filters were frequently limited by the need to cal-
culate Jacobians for each target variable. This was circum-
vented by the introduction of the EnKF. Provided one ac-

counts for the problems of ensemble size, the EnKF’s com-
bination of efficiency and simplicity has led it to supplant
other KF approaches.

The movement towards inclusion of explicit dynamics in
biogeochemical inverse problems has increased the use of
EnKF and variational methods since both handle the non-
linear formulations common in biogeochemical models. In
terrestrial models, Williams et al. (2005) and Quaife et al.
(2008) included state variables of a simple terrestrial model
in an ensemble system while Dutta et al. (20198) solved for
parameters. Trudinger et al. (2008) considered the joint esti-
mation of parameters and state variables using an EnKF and
pseudo-observations at a site. Barrett (2002) and Braswell
et al. (2005) used variational approaches to optimise param-
eters of simple biosphere models against various site data.
Rayner et al. (2005) and the papers that followed it (e.g.
Scholze et al., 2007; Knorr et al., 2010; Kaminski et al.,
2012; Scholze et al., 2016) used an adjoint of a more com-
prehensive (though incomplete) biosphere model coupled to
various observation operators in their variational approach.

There have been some attempts to compare the strengths
and weaknesses of the various approaches above. Meirink
et al. (2008) or Kopacz et al. (2009) illustrated the equiva-
lence of the variational and the analytical approaches for a
given definition of x, while Liu et al. (2016) showed some
convergence of the variational approach and of the ensemble
Kalman filter for increasing observation coverage. Trudinger
et al. (2007) used a simplified terrestrial model and a fairly
rigorous protocol to test the efficiency and robustness of sev-
eral estimation methods. They found no clear differences
among methods but did note the importance of careful anal-
ysis of assimilation performance (e.g. do the differences be-
tween posterior simulation and data agree with the assumed
PDF?). Chatterjee and Michalak (2013) compared the varia-
tional and EnKF approaches to estimating surface fluxes and
also noticed that each had comparative strengths and weak-
nesses. Trudinger et al. (2007) suggest that any of these al-
gorithms are capable of performing well if well handled and
analysed.

9 Future developments

In previous sections, we have described how many assimila-
tion methods are alternative algorithms for the same under-
lying problem. Different methods have risen to prominence
in response to combinations of the four drivers mentioned
above. Discussion of future directions is necessarily specula-
tive but we can suggest how some of the drivers will evolve
and their corresponding influence.

Computational constraints are less active now and likely
to remain so. This is true even when we consider the in-
creases in data size and complexity. The increased availabil-
ity of large numbers of processors rather than their individual
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speed will likely privilege naturally parallel algorithms such
as ensemble methods.

The rising complexity and diversity of models will also
promote ensemble approaches. The strongest analogy is with
climate prediction and seasonal forecasting where ensembles
frequently include different dynamical formulations as well
as different parameter settings. As of yet there have been few
attempts at multi-model ensemble data assimilation in bio-
geochemistry with the TransCom project being the highest
profile example. One reason for this is the scarcity of biogeo-
chemical models with data assimilation capability. Another
advantage of ensemble methods is a reduced entry barrier.

A more likely brake on the evolution of data assimilation
in biogeochemistry is the quality of the models themselves.
A precondition for the utility of data assimilation is that in-
formation learned in one environment or regime is applica-
ble elsewhere, or that a model can make coherent inferences
from different observations of the same system. As examples,
Medvigy et al. (2009) found it difficult to transfer inferences
made at one ecosystem site to another while Bacour et al.
(2015) found it difficult to fit multiple streams of data with a
single set of parameters. We would recommend tighter inte-
gration of data assimilation with model development so that
components can be tested as they are developed.

Finally, the distinctions we have drawn between meth-
ods here represent a snapshot in time. Methods are likely to
be matched and combined differently in future. At the mo-
ment most assimilation studies choose either external inputs
(boundary conditions or parameters) or model state as target
variables (Sect. 5.1). This distinction is convenient but arti-
ficial since both are usually uncertain. Both weak-constraint
variational methods and dual-state Kalman filters can handle
both types of target variables and we may expect to see them
used increasingly. Other merged approaches, for instance by
constructing optimal low-rank solutions even for highly di-
mensional problems in new systems, also seems a promising
way forward (Bousserez and Henze, 2018).

10 Conclusions

There is a wide range of techniques available for assimilating
data into models such as those used in biogeochemistry. Most
of these, however, inherit the basic formalism of Bayesian
inference in which posterior probabilities are constructed as
conjunctions or multiplications of probability distributions
describing prior knowledge, measured quantities and mod-
els relating the two. The methods differ in the information
they assume or adopt on the various components. In general
the more restrictive the assumptions the more powerful the
statistical apparatus available to analyse the system.
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