Articles | Volume 19, issue 21
https://doi.org/10.5194/acp-19-13355-2019
https://doi.org/10.5194/acp-19-13355-2019
Research article
 | 
30 Oct 2019
Research article |  | 30 Oct 2019

Rate enhancement in collisions of sulfuric acid molecules due to long-range intermolecular forces

Roope Halonen, Evgeni Zapadinsky, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Roope Halonen on behalf of the Authors (30 Sep 2019)  Author's response   Manuscript 
ED: Publish as is (07 Oct 2019) by Fangqun Yu
AR by Roope Halonen on behalf of the Authors (07 Oct 2019)  Manuscript 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The rate of collisions between molecules or clusters is used to determine particle formation in the atmosphere. The basic approach is to treat the colliding particles as noninteracting hard spheres. By using atomistic simulations with a realistic force field and theoretical approaches, we showed that the actual collision rate of two sulfuric acid molecules is more than twice as high as that for hard spheres. The results of this study will improve models of atmospheric particle growth.
Altmetrics
Final-revised paper
Preprint