Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12235-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-12235-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on the water vapor isotopic composition near the surface of tropical oceans and role of boundary layer mixing processes
Laboratoire de Météorologie Dynamique, IPSL, CNRS, Sorbonne
Université, Paris, France
Joseph Galewsky
Department of Earth and Planetary Sciences, University of
New Mexico, Albuquerque, USA
Gilles Reverdin
Sorbonne Université, CNRD/IRD/MNHN, LOCEAN, IPSL, Paris, France
Florent Brient
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse,
France
Related authors
Di Wang, Camille Risi, Lide Tian, Di Yang, Gabriel Bowen, Siteng Fan, Yang Su, Hongxi Pang, and Laurent Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-151, https://doi.org/10.5194/amt-2024-151, 2024
Preprint under review for AMT
Short summary
Short summary
We developed and validated a theoretical model for water vapor diffusion through sampling bags. This model accurately reconstructs the initial isotopic composition of the vapor samples. When applied to upper troposphere samples, the corrected data aligned closely with IASI satellite observations, enhancing the accuracy of drone-based measurements.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Jiacheng Chen, Jie Chen, Xunchang John Zhang, Peiyi Peng, and Camille Risi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-460, https://doi.org/10.5194/essd-2021-460, 2022
Manuscript not accepted for further review
Short summary
Short summary
To make full use of the advantages of isotope observations and simulations, this study generates a new dataset by integrating multi-GCM data based on data fusion and bias correction methods. This dataset contains monthly δ18Op over mainland China for the 1870–2017 period with a spatial resolution of 50–60 km. The built isoscape shows similar spatial and temporal distribution characteristics to observations, which is reliable and useful to extend the time and space of observations in China.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Jean-Lionel Lacour, Cyrille Flamant, Camille Risi, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 17, 9645–9663, https://doi.org/10.5194/acp-17-9645-2017, https://doi.org/10.5194/acp-17-9645-2017, 2017
Short summary
Short summary
We present temporal and spatial δD distributions derived from IASI obtained above the North Atlantic in the vicinity of West Africa. We show that the seasonality of δD in the North Atlantic is closely associated with the influence of the Saharan heat low (SHL). We provide an interpretation of the temporal and spatial variations in δD and show that the interactions between the large-scale subsidence, the ITCZ, and the SHL can be disentangled thanks to the added information contained in δD.
Alexandre Cauquoin and Camille Risi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-178, https://doi.org/10.5194/gmd-2017-178, 2017
Revised manuscript not accepted
Short summary
Short summary
AGCMs are known to have a warm and isotopically enriched bias over Antarctica. We test here the hypothesis that these biases are consequences of a too diffusive advection. We show here that a good representation of the advection, especially on the horizontal, is very important to reduce the bias in the isotopic contents of precipitation above this area and to improve the modelled water isotopes – temperature relationship, essential when using GCMs for paleoclimate applications.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
C. Risi, A. Landais, R. Winkler, and F. Vimeux
Clim. Past, 9, 2173–2193, https://doi.org/10.5194/cp-9-2173-2013, https://doi.org/10.5194/cp-9-2173-2013, 2013
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-464, https://doi.org/10.5194/essd-2024-464, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and include the quality flag for each sample.
Di Wang, Camille Risi, Lide Tian, Di Yang, Gabriel Bowen, Siteng Fan, Yang Su, Hongxi Pang, and Laurent Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-151, https://doi.org/10.5194/amt-2024-151, 2024
Preprint under review for AMT
Short summary
Short summary
We developed and validated a theoretical model for water vapor diffusion through sampling bags. This model accurately reconstructs the initial isotopic composition of the vapor samples. When applied to upper troposphere samples, the corrected data aligned closely with IASI satellite observations, enhancing the accuracy of drone-based measurements.
Gilles Reverdin, Claire Waelbroeck, Antje Voelker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3009, https://doi.org/10.5194/egusphere-2024-3009, 2024
Short summary
Short summary
Water isotopes in the ocean trace the freshwater exchanges between the ocean, the atmosphere and the cryosphere, and are used to investigate processes of the hydrological cycle. We illustrate offsets in seawater isotopic composition between different data sets that are larger than the expected variability that one often wants to explore. This highlights the need to share seawater isotopic composition samples dedicated to specific intercomparison of data produced in the different laboratories.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Gilles Reverdin, Thi Tuyet Trang Chau, Frédéric Chevallier, and Marion Gehlen
Ocean Sci., 20, 725–758, https://doi.org/10.5194/os-20-725-2024, https://doi.org/10.5194/os-20-725-2024, 2024
Short summary
Short summary
In the southern Indian Ocean, south of the polar front, an observed increase of sea surface fCO2 and a decrease of pH over 1985–2021 are mainly driven by anthropogenic CO2 uptake, but in the last decade (2010–2020) fCO2 and pH were stable in summer, highlighting the competitive balance between anthropogenic CO2 and primary production. In the water column the increase of anthropogenic CO2 concentrations leads to migration of the aragonite saturation state from 600 m in 1985 up to 400 m in 2021.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022, https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Jiacheng Chen, Jie Chen, Xunchang John Zhang, Peiyi Peng, and Camille Risi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-460, https://doi.org/10.5194/essd-2021-460, 2022
Manuscript not accepted for further review
Short summary
Short summary
To make full use of the advantages of isotope observations and simulations, this study generates a new dataset by integrating multi-GCM data based on data fusion and bias correction methods. This dataset contains monthly δ18Op over mainland China for the 1870–2017 period with a spatial resolution of 50–60 km. The built isoscape shows similar spatial and temporal distribution characteristics to observations, which is reliable and useful to extend the time and space of observations in China.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Anastasiia Tarasenko, Alexandre Supply, Nikita Kusse-Tiuz, Vladimir Ivanov, Mikhail Makhotin, Jean Tournadre, Bertrand Chapron, Jacqueline Boutin, Nicolas Kolodziejczyk, and Gilles Reverdin
Ocean Sci., 17, 221–247, https://doi.org/10.5194/os-17-221-2021, https://doi.org/10.5194/os-17-221-2021, 2021
Short summary
Short summary
Data from the ARKTIKA-2018 expedition and new satellite data help us to follow rapid changes in the upper layer of the Laptev and East Siberian seas (LS, ESS) in summer 2018. With satellite-derived surface temperature, an improved SMOS salinity, and wind, we study how the fresh river water is mixed with cold sea water and ice-melted water at small time and spatial scales. The wind pushes fresh water northward and northeastward, close to and under the ice, forcing it into the deep Arctic Ocean.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Solveig Olafsdottir, and Virginie Racapé
Biogeosciences, 17, 2553–2577, https://doi.org/10.5194/bg-17-2553-2020, https://doi.org/10.5194/bg-17-2553-2020, 2020
Short summary
Short summary
In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar surface water. Our results show an important reduction in the capacity of the ocean to absorb CO2 from the atmosphere (1993–2007), due to a rapid increase in the fCO2 and associated with a rapid decrease in pH. Conversely, data obtained during the last decade (2008–2017) show a stagnation of fCO2 (increasing the ocean sink for CO2) and pH.
Manon Tonnard, Hélène Planquette, Andrew R. Bowie, Pier van der Merwe, Morgane Gallinari, Floriane Desprez de Gésincourt, Yoan Germain, Arthur Gourain, Marion Benetti, Gilles Reverdin, Paul Tréguer, Julia Boutorh, Marie Cheize, François Lacan, Jan-Lukas Menzel Barraqueta, Leonardo Pereira-Contreira, Rachel Shelley, Pascale Lherminier, and Géraldine Sarthou
Biogeosciences, 17, 917–943, https://doi.org/10.5194/bg-17-917-2020, https://doi.org/10.5194/bg-17-917-2020, 2020
Short summary
Short summary
We investigated the spatial distribution of dissolved Fe during spring 2014, in order to understand the processes influencing the biogeochemical cycle in the North Atlantic. Our results highlighted elevated Fe close to riverine inputs at the Iberian Margin and glacial inputs at the Newfoundland and Greenland margins. Atmospheric deposition appeared to be a minor source of Fe. Convection was an important source of Fe in the Irminger Sea, which was depleted in Fe relative to nitrate.
Tanguy Szekely, Jérôme Gourrion, Sylvie Pouliquen, and Gilles Reverdin
Ocean Sci., 15, 1601–1614, https://doi.org/10.5194/os-15-1601-2019, https://doi.org/10.5194/os-15-1601-2019, 2019
Short summary
Short summary
This study is an attempt to validate the quality of a global temperature and salinity dataset by estimating the effects of measurement errors on the estimated ocean variability. The study shows that the effects of the measurement errors decrease during the quality control process and are almost null for the delayed-time-mode quality-controlled dataset.
Gilles Reverdin, Nicolas Metzl, Solveig Olafsdottir, Virginie Racapé, Taro Takahashi, Marion Benetti, Hedinn Valdimarsson, Alice Benoit-Cattin, Magnus Danielsen, Jonathan Fin, Aicha Naamar, Denis Pierrot, Kevin Sullivan, Francis Bringas, and Gustavo Goni
Earth Syst. Sci. Data, 10, 1901–1924, https://doi.org/10.5194/essd-10-1901-2018, https://doi.org/10.5194/essd-10-1901-2018, 2018
Short summary
Short summary
This paper presents the SURATLANT data set (SURveillance ATLANTique), consisting of individual data of temperature, salinity, parameters of the carbonate system, nutrients, and water stable isotopes (δ18O and δD) collected mostly from ships of opportunity since 1993 along transects between Iceland and Newfoundland. These data are used to quantify the seasonal cycle and can be used to investigate long-term tendencies in the surface ocean, including of pCO2 and pH.
Gilles Reverdin, Hedinn Valdimarsson, Gael Alory, Denis Diverres, Francis Bringas, Gustavo Goni, Lars Heilmann, Leon Chafik, Tanguy Szekely, and Andrew R. Friedman
Earth Syst. Sci. Data, 10, 1403–1415, https://doi.org/10.5194/essd-10-1403-2018, https://doi.org/10.5194/essd-10-1403-2018, 2018
Short summary
Short summary
We report monthly time series of surface temperature, salinity, and density in the North Atlantic subpolar gyre in 1993–2017 from hydrographical data collected in particular from thermosalinographs onboard selected ships of opportunity. Most of the time, this data set reproduces well the large-scale variability, except for a few seasons with limited sampling, in particular in winter along western Greenland or northeast of Newfoundland in the presence of sea ice.
Yoko Tsushima, Florent Brient, Stephen A. Klein, Dimitra Konsta, Christine C. Nam, Xin Qu, Keith D. Williams, Steven C. Sherwood, Kentaroh Suzuki, and Mark D. Zelinka
Geosci. Model Dev., 10, 4285–4305, https://doi.org/10.5194/gmd-10-4285-2017, https://doi.org/10.5194/gmd-10-4285-2017, 2017
Short summary
Short summary
Cloud feedback is the largest uncertainty associated with estimates of climate sensitivity. Diagnostics have been developed to evaluate cloud processes in climate models. For this understanding to be reflected in better estimates of cloud feedbacks, it is vital to continue to develop such tools and to exploit them fully during the model development process. Code repositories have been created to store and document the programs which will allow climate modellers to compute these diagnostics.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Jean-Lionel Lacour, Cyrille Flamant, Camille Risi, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 17, 9645–9663, https://doi.org/10.5194/acp-17-9645-2017, https://doi.org/10.5194/acp-17-9645-2017, 2017
Short summary
Short summary
We present temporal and spatial δD distributions derived from IASI obtained above the North Atlantic in the vicinity of West Africa. We show that the seasonality of δD in the North Atlantic is closely associated with the influence of the Saharan heat low (SHL). We provide an interpretation of the temporal and spatial variations in δD and show that the interactions between the large-scale subsidence, the ITCZ, and the SHL can be disentangled thanks to the added information contained in δD.
Alexandre Cauquoin and Camille Risi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-178, https://doi.org/10.5194/gmd-2017-178, 2017
Revised manuscript not accepted
Short summary
Short summary
AGCMs are known to have a warm and isotopically enriched bias over Antarctica. We test here the hypothesis that these biases are consequences of a too diffusive advection. We show here that a good representation of the advection, especially on the horizontal, is very important to reduce the bias in the isotopic contents of precipitation above this area and to improve the modelled water isotopes – temperature relationship, essential when using GCMs for paleoclimate applications.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
J. Yoo and J. Galewsky
Clim. Past Discuss., https://doi.org/10.5194/cp-2015-170, https://doi.org/10.5194/cp-2015-170, 2016
Manuscript not accepted for further review
Short summary
Short summary
To understand the evolutions of large-scale atmosphere (thermo-)dynamic conditions for tropical cyclone activity during the Last Glacial Maximum (LGM), dynamical downscaling of GCM (CCSM4) outputs was conducted using the WRF model. This paper describes the evaluation of the downscaling experiments. Results suggest that the WRF model is capable of long-term simulations in the different climate state of the LGM. This study might contribute to paleoenvironment and regional climate change studies.
C. Risi, A. Landais, R. Winkler, and F. Vimeux
Clim. Past, 9, 2173–2193, https://doi.org/10.5194/cp-9-2173-2013, https://doi.org/10.5194/cp-9-2173-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Estimating emissions of methane consistent with atmospheric measurements of methane and δ13C of methane
Disentangling the impact of air–sea interaction and boundary layer cloud formation on stable water isotope signals in the warm sector of a Southern Ocean cyclone
Stable water isotope signals in tropical ice clouds in the West African monsoon simulated with a regional convection-permitting model
Disentangling different moisture transport pathways over the eastern subtropical North Atlantic using multi-platform isotope observations and high-resolution numerical modelling
Firewood residential heating – local versus remote influence on the aerosol burden
Kinetic mass-transfer calculation of water isotope fractionation due to cloud microphysics in a regional meteorological model
The influence of 14CO2 releases from regional nuclear facilities at the Heidelberg 14CO2 sampling site (1986–2014)
Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe
How does sea ice influence δ18O of Arctic precipitation?
Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations
To what extent could water isotopic measurements help us understand model biases in the water cycle over Western Siberia
Simulating the integrated summertime Δ14CO2 signature from anthropogenic emissions over Western Europe
Variations of oxygen-18 in West Siberian precipitation during the last 50 years
Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition
The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMOiso
Theory of isotopic fractionation on facetted ice crystals
Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Iris Thurnherr and Franziska Aemisegger
Atmos. Chem. Phys., 22, 10353–10373, https://doi.org/10.5194/acp-22-10353-2022, https://doi.org/10.5194/acp-22-10353-2022, 2022
Short summary
Short summary
Stable water isotopes in marine boundary layer vapour are strongly influenced by the strength of air–sea fluxes. Here, we investigate a distinct vapour isotope signal observed in the warm sector of Southern Ocean cyclones. Single-process air parcel models are used together with high-resolution isotope-enabled simulations with the weather prediction model COSMOiso to improve our understanding of the importance of air–sea fluxes for the moisture cycling in the context of extratropical cyclones.
Andries Jan de Vries, Franziska Aemisegger, Stephan Pfahl, and Heini Wernli
Atmos. Chem. Phys., 22, 8863–8895, https://doi.org/10.5194/acp-22-8863-2022, https://doi.org/10.5194/acp-22-8863-2022, 2022
Short summary
Short summary
The Earth's water cycle contains the common H2O molecule but also the less abundant, heavier HDO. We use their different physical properties to study tropical ice clouds in model simulations of the West African monsoon. Isotope signals reveal different processes through which ice clouds form and decay in deep-convective and widespread cirrus. Previously observed variations in upper-tropospheric vapour isotopes are explained by microphysical processes in convective updraughts and downdraughts.
Fabienne Dahinden, Franziska Aemisegger, Heini Wernli, Matthias Schneider, Christopher J. Diekmann, Benjamin Ertl, Peter Knippertz, Martin Werner, and Stephan Pfahl
Atmos. Chem. Phys., 21, 16319–16347, https://doi.org/10.5194/acp-21-16319-2021, https://doi.org/10.5194/acp-21-16319-2021, 2021
Short summary
Short summary
We use high-resolution numerical isotope modelling and Lagrangian backward trajectories to identify moisture transport pathways and governing physical and dynamical processes that affect the free-tropospheric humidity and isotopic variability over the eastern subtropical North Atlantic. Furthermore, we conduct a thorough isotope modelling validation with aircraft and remote-sensing observations of water vapour isotopes.
Clara Betancourt, Christoph Küppers, Tammarat Piansawan, Uta Sager, Andrea B. Hoyer, Heinz Kaminski, Gerhard Rapp, Astrid C. John, Miriam Küpper, Ulrich Quass, Thomas Kuhlbusch, Jochen Rudolph, Astrid Kiendler-Scharr, and Iulia Gensch
Atmos. Chem. Phys., 21, 5953–5964, https://doi.org/10.5194/acp-21-5953-2021, https://doi.org/10.5194/acp-21-5953-2021, 2021
Short summary
Short summary
For the first time, we included stable isotopes in the Lagrangian particle dispersion model FLEXPART to investigate firewood home heating aerosol. This is an innovative source apportionment methodology since comparison of stable isotope ratio model predictions with observations delivers quantitative understanding of atmospheric processes. The main outcome of this study is that the home heating aerosol in residential areas was not of remote origin.
I-Chun Tsai, Wan-Yu Chen, Jen-Ping Chen, and Mao-Chang Liang
Atmos. Chem. Phys., 19, 1753–1766, https://doi.org/10.5194/acp-19-1753-2019, https://doi.org/10.5194/acp-19-1753-2019, 2019
Short summary
Short summary
In conventional models, isotope exchange between liquid and gas phases is usually assumed to be in equilibrium, and the highly kinetic phase transformation processes inferred in clouds are yet to be fully investigated. We show that different factors controlling isotopic composition, including water vapor sources, atmospheric transport, phase transition pathways of water in clouds, and kinetic-versus-equilibrium mass transfer, contributed significantly to the variations in isotope composition.
Matthias Kuderer, Samuel Hammer, and Ingeborg Levin
Atmos. Chem. Phys., 18, 7951–7959, https://doi.org/10.5194/acp-18-7951-2018, https://doi.org/10.5194/acp-18-7951-2018, 2018
Short summary
Short summary
Atmospheric 14CO2 measurements allow for estimating the regional fossil fuel CO2 component. However, results potentially need to be corrected for 14CO2 contamination from near-by nuclear facilities (NF). Our dispersion estimates of corresponding contaminations for Heidelberg, based on differently resolved wind fields, show differences of up to a factor of 2. Estimates from highly resolved models coupled with temporally resolved 14CO2 emissions from NFs are required for more accurate results.
Marina Dütsch, Stephan Pfahl, Miro Meyer, and Heini Wernli
Atmos. Chem. Phys., 18, 1653–1669, https://doi.org/10.5194/acp-18-1653-2018, https://doi.org/10.5194/acp-18-1653-2018, 2018
Short summary
Short summary
Atmospheric processes are imprinted in the concentrations of stable water isotopes. Therefore, isotopes can be used to gain insight into these processes and improve our understanding of the water cycle. In this study, we present a new method that quantitatively shows which atmospheric processes influence isotope concentrations in near-surface water vapour over Europe. We found that the most important processes are evaporation from the ocean, evapotranspiration from land, and turbulent mixing.
Anne-Katrine Faber, Bo Møllesøe Vinther, Jesper Sjolte, and Rasmus Anker Pedersen
Atmos. Chem. Phys., 17, 5865–5876, https://doi.org/10.5194/acp-17-5865-2017, https://doi.org/10.5194/acp-17-5865-2017, 2017
Short summary
Short summary
The recent decades loss of Arctic sea ice provide an interesting opportunity to study the impact of sea ice changes on the isotopic composition of Arctic precipitation. Using a climate model that can simulate water isotopes, we find that reduced sea ice extent yields more enriched isotope values while increased sea ice extent yields more
depleted isotope values. Results also show that the spatial distribution of the sea ice extent are important.
Sourish Basu, John Bharat Miller, and Scott Lehman
Atmos. Chem. Phys., 16, 5665–5683, https://doi.org/10.5194/acp-16-5665-2016, https://doi.org/10.5194/acp-16-5665-2016, 2016
Short summary
Short summary
We present a dual tracer atmospheric inversion technique to separately estimate biospheric and fossil fuel CO2 fluxes from atmospheric measurements of CO2 and 14CO2. In addition to estimating monthly regional fossil fuel fluxes of CO2, this system can also reduce biases in biospheric fluxes that arise in a traditional CO2 inversion from prescribing a fixed but inaccurate fossil fuel flux.
V. Gryazin, C. Risi, J. Jouzel, N. Kurita, J. Worden, C. Frankenberg, V. Bastrikov, K. Gribanov, and O. Stukova
Atmos. Chem. Phys., 14, 9807–9830, https://doi.org/10.5194/acp-14-9807-2014, https://doi.org/10.5194/acp-14-9807-2014, 2014
D. Bozhinova, M. K. van der Molen, I. R. van der Velde, M. C. Krol, S. van der Laan, H. A. J. Meijer, and W. Peters
Atmos. Chem. Phys., 14, 7273–7290, https://doi.org/10.5194/acp-14-7273-2014, https://doi.org/10.5194/acp-14-7273-2014, 2014
M. Butzin, M. Werner, V. Masson-Delmotte, C. Risi, C. Frankenberg, K. Gribanov, J. Jouzel, and V. I. Zakharov
Atmos. Chem. Phys., 14, 5853–5869, https://doi.org/10.5194/acp-14-5853-2014, https://doi.org/10.5194/acp-14-5853-2014, 2014
A. Stohl, P. Seibert, G. Wotawa, D. Arnold, J. F. Burkhart, S. Eckhardt, C. Tapia, A. Vargas, and T. J. Yasunari
Atmos. Chem. Phys., 12, 2313–2343, https://doi.org/10.5194/acp-12-2313-2012, https://doi.org/10.5194/acp-12-2313-2012, 2012
S. Pfahl, H. Wernli, and K. Yoshimura
Atmos. Chem. Phys., 12, 1629–1648, https://doi.org/10.5194/acp-12-1629-2012, https://doi.org/10.5194/acp-12-1629-2012, 2012
J. Nelson
Atmos. Chem. Phys., 11, 11351–11360, https://doi.org/10.5194/acp-11-11351-2011, https://doi.org/10.5194/acp-11-11351-2011, 2011
K. Zhang, J. Feichter, J. Kazil, H. Wan, W. Zhuo, A. D. Griffiths, H. Sartorius, W. Zahorowski, M. Ramonet, M. Schmidt, C. Yver, R. E. M. Neubert, and E.-G. Brunke
Atmos. Chem. Phys., 11, 7817–7838, https://doi.org/10.5194/acp-11-7817-2011, https://doi.org/10.5194/acp-11-7817-2011, 2011
Cited articles
Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., and Wernli, H.: Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study, Atmos. Meas. Tech., 5, 1491–1511, https://doi.org/10.5194/amt-5-1491-2012, 2012. a
Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D., Longstaffe,
F. J., Berg, P., Schumacher, C., and Funk, A.: Proportions of convective and
stratiform precipitation revealed in water isotope ratios, Nat. Geosci.,
9, 624–629, https://doi.org/10.1038/ngeo2739, 2016. a
Bailey, A., Toohey, D., and Noone, D.: Characterizing moisture exchange between
the Hawaiian convective boundary layer and free troposphere using stable
isotopes in water, J. Geophys. Res.-Atmos., 118,
8208–8221, 2013. a
Benetti, M., Reverdin, G., Aloisi, G., and Sveinbjörnsdóttir, Á.:
Stable isotopes in surface waters of the A tlantic O cean: Indicators of
ocean-atmosphere water fluxes and oceanic mixing processes, J.
Geophys. Res.-Oceans, 122, 4723–4742, 2017a. a
Benetti, M., Steen-Larsen, H. C., Reverdin, G., Sveinbjörnsdóttir,
Á. E., Aloisi, G., Berkelhammer, M. B., Bourlès, B., Bourras, D.,
De Coetlogon, G., Cosgrove, A., Faber, A.-K., Grelet, J., Hansen, S. B., Johnson, R., Legoff, H., Martin, N., Peters, A. J., Popp, T. J., Reynaud, T., and Winther, M.: Stable isotopes in the atmospheric
marine boundary layer water vapour over the Atlantic Ocean, 2012–2015,
Sci. Data, 4, 160128, https://doi.org/10.1038/sdata.2016.128, 2017b. a
Blossey, P. N., Kuang, Z., and Romps, D. M.: Isotopic composition of water in
the tropical tropopause layer in cloud-resolving simulations of an idealized
tropical circulation, J. Geophys. Res., 115, D24309,
https://doi.org/10.1029/2010JD014554, 2010. a
Bolot, M., Legras, B., and Moyer, E. J.: Modelling and interpreting the isotopic composition of water vapour in convective updrafts, Atmos. Chem. Phys., 13, 7903–7935, https://doi.org/10.5194/acp-13-7903-2013, 2013. a
Bony, S., Lau, K., and Sud, Y.: Sea surface temperature and large-scale
circulation influences on tropical greenhouse effect and cloud radiative
forcing, J. Climate, 10, 2055–2077, 1997. a
Bony, S., Dufresne, J.-L., Le Treut, H., Morcrette, J.-J., and
Senior, C.: On dynamic and thermodynamic components of cloud changes,
Clim. Dynam., 22, 71–86, https://doi.org/10.1007/s00382-003-0369-6, 2004. a, b
Bony, S., Risi, C., and Vimeux, F.: Influence of convective processes on the
isotopic composition (deltaO18 and deltaD) of precipitation and water vapor
in the Tropics, Part 1: Radiative-convective equilibrium and TOGA-COARE
simulations, J. Geophys. Res., 113, D19305, https://doi.org/10.1029/2008JD009942,
2008. a, b, c, d
Bony, S., Bellon, G., Klocke, D., Sherwood, S., Fermepin, S., and Denvil, S.:
Robust direct effect of carbon dioxide on tropical circulation and regional
precipitation, Nat. Geosci., 6, 447–451, 2013. a
Bony, S., Stevens, B., Ament, F., Bigorre, S., Chazette, P., Crewell, S.,
Delanoë, J., Emanuel, K., Farrell, D., Flamant, C., Gross, S., Hirsch, L., Karstensen, J., Mayer, B., Nuijens, L., Ruppert Jr, J. H., Sandu, I., Siebesma, P., Speich, S., Szczap, F., Totems, J., Vogel, R., Wendisch, M., and Wirth, M.: EUREC4A: a
field campaign to elucidate the couplings between clouds, convection and
circulation, Surv. Geophys., 38, 1529–1568, https://doi.org/10.1007/s10712-017-9428-0, 2017. a
Bretherton, C. S.: Insights into low-latitude cloud feedbacks from
high-resolution models, Phil. Trans. R. Soc. A, 373, 20140415, https://doi.org/10.1098/rsta.2014.0415, 2015. a
Brient, F., Couvreux, F., Najda, V., Rio, C., and Honnert, R.: Object-oriented
identification of coherent structures in large-eddy simulations: importance
of downdrafts in stratocumulus, Geophy. Res. Lett., 46, 2854–2864, https://doi.org/10.1029/2018GL081499, 2019. a, b
Couvreux, F., Hourdin, F., and Rio, C.: Resolved versus parametrized
boundary-layer plumes, Part I: A parametrization-oriented conditional
sampling in large-eddy simulations, Bound.-Lay. Meteorol., 134,
441–458, 2010. a
Craig, H. and Gordon, L. I.: Deuterium and oxygen-18 variations in the ocean
and marine atmosphere, Stable Isotope in Oceanographic Studies and
Paleotemperatures, Laboratorio di Geologia Nucleate, Pisa, Italy, 9–130,
1965. a
Dansgaard: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964. a
De Roode, S. R., Sandu, I., Van Der Dussen, J. J., Ackerman, A. S., Blossey,
P., Jarecka, D., Lock, A., Siebesma, A. P., and Stevens, B.: Large-eddy
simulations of EUCLIPSE–GASS Lagrangian stratocumulus-to-cumulus
transitions: Mean state, turbulence, and decoupling, J.
Atmos. Sci., 73, 2485–2508, 2016. a
De Rooy, W. C., Bechtold, P., Fröhlich, K., Hohenegger, C., Jonker, H.,
Mironov, D., Siebesma, A. P., Teixeira, J., and Yano, J.-I.: Entrainment and
detrainment in cumulus convection: An overview, Q. J.
Roy. Meteorol. Soc., 139, 1–19, 2013. a
Dee, S. G., Nusbaumer, J., Bailey, A., Russell, J. M., Lee, J.-E., Konecky, B.,
Buenning, N. H., and Noone, D. C.: Tracking the Strength of the Walker
Circulation With Stable Isotopes in Water Vapor, J. Geophys.
Res.-Atmos., 123, 7254–7270, 2018. a
Delaygue, G., Masson, V., Jouzel, J., Koster, R. D., and Healy, R. J.: The
origin of Antarctic precipitation: A modelling approach, Tellus B, 52,
19–36, 2000. a
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
alkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., and Viovy, N.: Climate change
projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5,
Clim. Dynam., 40, 1–43, https://doi.org/10.1007/s00382-012-1636-1, 2012. a
Duynkerke, P. G., de Roode, S. R., van Zanten, M. C., Calvo, J., Cuxart, J.,
Cheinet, S., Chlond, A., Grenier, H., Jonker, P. J., Köhler, M., Lenderink, G., Lewellen, D., Lappen, C., Lock, A. P., Moeng, C., Müller, F., Olmeda, D., Piriou, J.-M., Sánchez, E., and Sednev, I.:
Observations and numerical simulations of the diurnal cycle of the EUROCS
stratocumulus case, Q. J. Roy. Meteorol. Soc., 130, 3269–3296, 2004. a
Ehhalt, D. H.: Vertical profiles of HTO, HDO, and H2O in the troposphere, NCAR
technical note, NCAR-TN-STR-100, 1974. a
Ehhalt, D. H., Rohrer, F., and Fried, A.: Vertical profiles of HDO/H2O in the
troposphere, J. Geophy. Res., 110, D13, https://doi.org/10.1029/2004JD005569, 2005. a
Ent, R. J. and Savenije, H. H.: Oceanic sources of continental precipitation
and the correlation with sea surface temperature, Water Resour. Res.,
49, 3993–4004, 2013. a
Field, R. D., Jones, D. B. A., and Brown, D. P.: The effects of
post-condensation exchange on the isotopic composition of water in the
atmosphere, J. Geophy. Res., 115, D24305, https://doi.org/10.1029/2010JD014334, 2010. a
Galewsky, J.: Using Stable Isotopes in Water Vapor to Diagnose Relationships
Between Lower-Tropospheric Stability, Mixing, and Low-Cloud Cover Near the
Island of Hawaii, Geophys. Res. Lett., 45, 297–305,
2018a. a
Galewsky, J.: Relationships between inversion strength, lower-tropospheric
moistening, and low-cloud fraction in the subtropical Southeast Pacific
derived from stable isotopologues of water vapor, Geophys. Res.
Lett., 45, 7701–7710, 2018b. a
Galewsky, J. and Rabanus, D.: A stochastic model for diagnosing subtropical
humidity dynamics with stable isotopologues of water vapor, J.
Atmos. Sci., 73, 1741–1753, 2016. a
Galewsky, J. and Samuels-Crow, K.: Water vapor isotopic composition of a
stratospheric air intrusion: Measurements from the Chajnantor Plateau, Chile,
J. Geophys. Res.-Atmos., 119, 9679–9691, 2014. a
Galewsky, J., Strong, M., and Sharp, Z. D.: Measurements of water vapor D/H
ratios from Mauna Kea, Hawaii, and implications for subtropical humidity
dynamics, Geophys. Res. Lett., 34, L22808, https://doi.org/10.1029/2007GL031330,
2007. a
Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., and
Schneider, M.: Stable isotopes in atmospheric water vapor and applications to
the hydrologic cycle, Rev. Geophys., 54, 809–865, 2016. a
Garratt, J. R.: The atmospheric boundary layer, Earth-Sci. Rev., 37,
89–134, 1994. a
Gates, W. L.: AMIP: The Atmospheric Model Intercomparison Project, B. Am.
Meteor. Soc., 73, 1962–1970, 1992. a
Gerber, H., Frick, G., Malinowski, S. P., Jonsson, H., Khelif, D., and Krueger,
S. K.: Entrainment rates and microphysics in POST stratocumulus, J.
Geophys. Res.-Atmos., 118, 12094–12109, https://doi.org/10.1002/jgrd.50878, 2013. a
Gimeno, L., A., Drumond, R., Nieto, Trigo, R. M., and Stohl, A.: On the origin
of continental precipitation, Geophys. Res. Lett., 37, L13804,
https://doi.org/10.1029/2010GL043712, 2010. a
Glenn, I. B. and Krueger, S. K.: Downdrafts in the near cloud environment of
deep convective updrafts, J. Adv. Model. Earth Syst., 6,
1–8, 2014. a
Good, S. P., Noone, D., Kurita, N., Benetti, M., and Bowen, G. J.: D/H isotope
ratios in the global hydrologic cycle, Geophys. Res. Lett., 42,
5042–5050, 2015. a
Graf, P., Wernli, H., Pfahl, S., and Sodemann, H.: A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain, Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, 2019. a
Guilpart, E., Vimeux, F., Evan, S., Brioude, J., Metzger, J.-M., Barthe, C.,
Risi, C., and Cattani, O.: The isotopic composition of near-surface water
vapor at the Maïdo observatory (Reunion Island, southwestern Indian
Ocean) documents the controls of the humidity of the subtropical troposphere,
J. Geophys. Res.-Atmos., 122, 9628–9650, 2017. a
Heus, T., Pols, C. F. J., Jonker, H. J., Van den Akker, H. E., and Lenschow,
D. H.: Observational validation of the compensating mass flux through the
shell around cumulus clouds, Q. J. Roy. Meteorol.
Soc., 135, 101–112, 2009. a
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F.,
Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P.,
Grandpeix, J.-Y., Krinner, G., Levan, P., Li, Z.-X., and Lott, F.:
The LMDZ4 general circulation model: climate performance and sensitivity to
parametrized physics with emphasis on tropical convection, Clim. Dynam., 27,
787–813, https://doi.org/10.1007/s00382-006-0158-0, 2006. a
Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F.,
Rochetin, N., Fairhead, L., Idelkadi, A., Musat, I., Dufresne, J.-L., Lahellec, A., Lefebvre, M.-P., and Roehrig, R.: LMDZ5B: the
atmospheric component of the IPSL climate model with revisited
parameterizations for clouds and convection, Clim. Dynam., 40,
2193–2222, 2013. a
Jonas, P.: Observations of cumulus cloud entrainment, Atmos. Res., 25,
105–127, 1990. a
Jouzel, J. and Koster, R. D.: A reconsideration of the initial conditions used
for stable water isotope models, J. Geophys. Res., 101, 22933–22938,
https://doi.org/10.1029/96JD02362, 1996. a
Khalsa, S. J. S.: Direct sampling of entrainment events in a marine
stratocumulus layer, J. Atmos. Sci., 50, 1734–1750,
1993. a
Lacour, J.-L., Clarisse, L., Worden, J., Schneider, M., Barthlott, S., Hase, F., Risi, C., Clerbaux, C., Hurtmans, D., and Coheur, P.-F.: Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations, Atmos. Meas. Tech., 8, 1447–1466, https://doi.org/10.5194/amt-8-1447-2015, 2015. a
Lacour, J.-L., Flamant, C., Risi, C., Clerbaux, C., and Coheur, P.-F.: Importance of the Saharan heat low in controlling the North Atlantic free tropospheric humidity budget deduced from IASI δD observations, Atmos. Chem. Phys., 17, 9645–9663, https://doi.org/10.5194/acp-17-9645-2017, 2017a. a
Lacour, J.-L., Risi, C., Worden, J., Clerbaux, C., and Coheur, P.-F.: Isotopic
signature of convection's depth in water vapor as seen from IASI and TES D
observations, Earth Planet. Sc. Lett., 7, 9645–9663,
doi.org/10.5194/acp–17–9645–2017, 2017b. a
Lawrence, J. R., Gedzelman, S. D., Gamache, J., and Black, M.: Stable isotope
ratios: Hurricane Olivia, J. Atmos. Chem, 41, 67–82, 2002. a
Lawrence, J. R., Gedzelman, S. D., Dexheimer, D., Cho, H.-K., Carrie,
G. D., Gasparini, R., Anderson, C. R., Bowman, K. P., and
Biggerstaff, M. I.: Stable isotopic composition of water vapor in the
tropics, J. Geophys. Res., 109, D06115,
https://doi.org/10.1029/2003JD004046, 2004. a, b, c
Lee, J.-E., Pierrehumbert, R., Swann, A., and Lintner, B. R.: Sensitivity of
stable water isotopic values to convective parameterization schemes, Geophys.
Res. Lett., 36, L23801, https://doi.org/10.1029/2009GL040880, 2009. a
Lozar, A. and Mellado, J. P.: Evaporative cooling amplification of the
entrainment velocity in radiatively driven stratocumulus, Geophys.
Res. Lett., 42, 7223–7229, 2015. a
Majoube, M.: Fractionnement en Oxygène 18 et en Deutérium entre l'eau
et sa vapeur, Journal de Chimie Physique, 10, 1423–1436, 1971. a
Masunaga, H. and Sumi, Y.: A toy model of tropical convection with a moisture
storage closure, J. Adv. Model. Earth Syst., 9, 647–667,
2017. a
McGrath, R., Semmler, T., Sweeney, C., and Wang, S.: Impact of balloon drift
errors in radiosonde data on climate statistics, J. Climate, 19,
3430–3442, 2006. a
Moore, M., Kuang, Z., and Blossey, P. N.: A moisture budget perspective of the
amount effect, Geophys. Res. Lett., 41, 1329–1335,
https://doi.org/10.1002/2013GL058302, 2014. a
Moyer, E. J., Irion, F. W., Yung, Y. L., and Gunson, M. R.: ATMOS
stratospheric deuterated water and implications for troposphere-stratosphere
transport, Geophys. Res. Lett., 23, 2385–2388, https://doi.org/10.1029/96GL01489,
1996. a
Neggers, R., Stevens, B., and Neelin, J. D.: A simple equilibrium model for
shallow-cumulus-topped mixed layers, Theor. Comp. Fluid Dyn., 20, 305–322, 2006. a
Nicholls, S. and Turton, J.: An observational study of the structure of
stratiform cloud sheets: Part II, Entrainment, Q. J. Roy.
Meteorol. Soc., 112, 461–480, 1986. a
Oke, T. R.: Boundary layer climates, Halsted press, New York, 1988. a
Oueslati, B., Bony, S., Risi, C., and Dufresne, J.-L.: Interpreting the
inter-model spread in regional precipitation projections in the tropics: role
of surface evaporation and cloud radiative effects, Clim. Dynam., 47,
2801–2815, https://doi.org/10.1007/s00382-016-2998-6, 2016. a
Randall, D., Krueger, S., Bretherton, C., Curry, J., Duynkerke, P., Moncrieff,
M., Ryan, B., Starr, D., Miller, M., Rossow, W., Tselioudis, G. and Wielicki, B.: Confronting models
with data: The GEWEX cloud systems study, B. Am.
Meteorol. Soc., 84, 455–469, 2003. a
Risi, C., Bony, S., and Vimeux, F.: Influence of convective processes on the
isotopic composition (O18 and D) of precipitation and water vapor in the
Tropics: Part 2: Physical interpretation of the amount effect, J. Geophys.
Res., 113, D19306, https://doi.org/10.1029/2008JD009943, 2008. a
Risi, C., Bony, S., Vimeux, F., Chong, M., and Descroix, L.: Evolution of the
water stable isotopic composition of the rain sampled along Sahelian squall
lines, Q. J. Roy. Meteor. Soc., 136, 227–242,
2010a. a
Risi, C., Bony, S., Vimeux, F., Frankenberg, C., and Noone, D.: Understanding
the Sahelian water budget through the isotopic composition of water vapor and
precipitation, J. Geophys. Res, 115, D24110, https://doi.org/10.1029/2010JD014690,
2010b. a, b
Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water stable isotopes in the
LMDZ4 General Circulation Model: model evaluation for present day and past
climates and applications to climatic interpretation of tropical isotopic
records, J. Geophys. Res., 115, D12118, https://doi.org/10.1029/2009JD013255,
2010c. a, b
Risi, C., Landais, A., Bony, S., Masson-Delmotte, V., Jouzel, J., and Vimeux,
F.: Understanding the 17O-excess glacial-interglacial variations in Vostok
precipitation, J. Geophys. Res, 115, D10112, https://doi.org/10.1029/2008JD011535,
2010d. a, b
Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M.,
Funke, B., Walker, K., Bernath, P., Schneider, M., Wunch, D., Sherlock, V.,
Deutscher, N., Griffith, D., Wernberg, P., Bony, S., Jeonghoon Lee, D. B.,
Uemura, R., and Sturm, C.: Process-evaluation of tropical and subtropical
tropospheric humidity simulated by general circulation models using water
vapor isotopic observations, Part 1: model-data intercomparison, J. Geophys.
Res., 117, D05303, 2012a. a
Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M.,
Funke, B., Walker, K., Bernath, P., Schneider, M., Wunch, D., Sherlock, V.,
Deutscher, N., Griffith, D., Wernberg, P., Bony, S., Lee, J., Brown, D.,
Uemura, R., and Sturm, C.: Process-evaluation of tropical and subtropical
tropospheric humidity simulated by general circulation models using water
vapor isotopic observations, Part 2: an isotopic diagnostic of the mid and
upper tropospheric moist bias, J. Geophys. Res., 117, D05304,
2012b. a, b
Risi, C., Noone, D., Frankenberg, C., and Worden, J.: Role of continental
recycling in intraseasonal variations of continental moisture as deduced from
model simulations and water vapor isotopic measurements, Water Resour. Res.,
49, 4136–4156, https://doi.org/10.1002/wrcr.20312, 2013. a
Rodts, S. M., Duynkerke, P. G., and Jonker, H. J.: Size distributions and
dynamical properties of shallow cumulus clouds from aircraft observations and
satellite data, J. Atmos. Sci., 60, 1895–1912, 2003. a
Rosenfeld, D. and Mintz, Y.: Evaporation of rain falling from convective clouds
as derived from radar measurements, J. Appl. Meteorol., 27,
209–215, 1988. a
Salati, E., Dall'Olio, A., Matsui, E., and Gat, J.: Recycling of water in the
Amazon basin: An isotopic study, Water Resour. Res., 15, 1250–1258,
1979. a
Seidel, D. J., Ao, C. O., and Li, K.: Estimating climatological planetary
boundary layer hheight from radiosonde observations: comparison of methods
and uncertainty analysis, J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009JD013680, 2010. a
Seidel, D. J., Sun, B., Pettey, M., and Reale, A.: Global radiosonde balloon
drift statistics, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2010JD014891, 2011. a
Sherwood, S., Bony, S., and Dufresne, J.-L.: Spread in model climate
sensitivity traced to atmospheric convective mixing, Nature, 505, 37–42,
https://doi.org/10.1038/nature12829, 2014. a
Sherwood, S. C.: Maintenance of the free tropospheric tropical water vapor
distribution, part II: simulation of large-scale advection, J. Climate, 11,
2919–2934, 1996. a
Sodemann, H., Aemisegger, F., Pfahl, S., Bitter, M., Corsmeier, U., Feuerle, T., Graf, P., Hankers, R., Hsiao, G., Schulz, H., Wieser, A., and Wernli, H.: The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights, Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, 2017. a, b, c, d, e, f, g, h, i
Sorbjan, Z.: Structure of the atmospheric boundary layer, Prentice Hall,
Englewood Cliffs, N. J., 1989. a
Stewart, M. K.: Stable isotope fractionation due to evaporation and isotopic
exchange of falling waterdrops: Applications to atmospheric processes and
evaporation of lakes, J. Geophys. Res., 80, 1133–1146, 1975. a
Stull, R. B.: An intruduction to boundary layer meteorology, Kluwer, Dordrect,
1988. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, 2012. a
Thayer-Calder, K. and Randall, D.: A numerical investigation of boundary layer
quasi-equilibrium, Geophys. Res. Lett., 42, 550–556, 2015. a
Tremoy, G., Vimeux, F., Soumana, S., Souley, I., Risi, C., Cattani, O.,
Favreau, G., and Oi, M.: Clustering mesoscale convective systems with
laser-based water vapor δ18O monitoring in Niamey (Niger), J. Geophys.
Res., 119, 5079–5103, https://doi.org/10.1002/2013JD020968, 2014. a
Uppala, S., Kallberg, P., Simmons, A., Andrae, U., da Costa Bechtold, V.,
Fiorino, M., Gibson, J., Haseler, J., Hernandez, A., Kelly, G., Li, X.,
Onogi, K., Saarinen, S., Sokka, N., Allan, R., Andersson, E., Arpe, K.,
Balmaseda, M., Beljaars, A., van de Berg, L., Bidlot, J., Bormann, N.,
Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes,
M., Hagemann, S., Holm, E., Hoskins, B., Isaksen, L., Janssen, P., Jenne, R.,
McNally, A., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N., Saunders, R.,
Simon, P., Sterl, A., Trenberth, K., Untch, A., Vasiljevic, D., Viterbo, P.,
and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteorol. Soc., 131,
2961–3012, 2005. a
Van Leer, B.: Towards the ultimate conservative difference scheme: IV, a new
approach to numerical convection, J. Computational Phys., 23, 276–299,
1977. a
Vial, J., Bony, S., Dufresne, J.-L., and Roehrig, R.: Coupling between
lower-tropospheric convective mixing and low-level clouds: Physical
mechanisms and dependence on convection scheme, J. Adv.
Model. Earth Syst., 8, 1892–1911, 2016. a
Wang, Q. and Albrecht, B. A.: Observations of cloud-top entrainment in marine
stratocumulus clouds, J. Atmos. Sci., 51, 1530–1547,
1994. a
Webster, C. R. and Heymsfield, A. J.: Water Isotope Ratios D/H, 18O/16O,
17O/16O in and out of Clouds Map Dehydration Pathways, Science, 302,
1742–1746, https://doi.org/10.1126/science.1089496, 2003. a
Williams, K., Ringer, M., and Senior, C.: Evaluating the cloud response to
climate change and current climate variability, Clim. Dynam., 20,
705–721, 2003. a
Wood, R.: Stratocumulus clouds, Mon. Weather Rev., 140, 2373–2423, 2012. a
Wood, R. and Bretherton, C. S.: Boundary layer depth, entrainment, and
decoupling in the cloud-capped subtropical and tropical marine boundary
layer, J. Climate, 17, 3576–3588, 2004. a
Worden, J., Noone, D., Galewsky, J., Bailey, A., Bowman, K., Brown, D., Hurley, J., Kulawik, S., Lee, J., and Strong, M.: Estimate of bias in Aura TES HDO/H2O profiles from comparison of TES and in situ HDO/H2O measurements at the Mauna Loa observatory, Atmos. Chem. Phys., 11, 4491–4503, https://doi.org/10.5194/acp-11-4491-2011, 2011.
a
Worden, J., Kulawik, S., Frankenberg, C., Payne, V., Bowman, K., Cady-Peirara, K., Wecht, K., Lee, J.-E., and Noone, D.: Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances, Atmos. Meas. Tech., 5, 397–411, https://doi.org/10.5194/amt-5-397-2012, 2012. a
Wyant, M. C., Bretherton, C. S., Bacmeister, J. T., Kiehl, J. T., Held, I. M.,
Zhao, M., Klein, S. A., and Soden, B. J.: A comparison of low-latitude cloud
properties and their response to climate change in three AGCMs sorted into
regimes using mid-tropospheric vertical velocity, Clim. Dynam., 27,
261–279, 2006. a
Yanai, M., Esbensen, S., and Chu, J.-H.: Determination of bulk properties of
tropical cloud clusters from large-scale heat and moisture budgets, J.
Atmos. Sci., 30, 611–627, 1973. a
Zhang, M., Bretherton, C. S., Blossey, P. N., Austin, P. H., Bacmeister, J. T.,
Bony, S., Brient, F., Cheedela, S. K., Cheng, A., Del Genio, A. D., De Roode, S. R., Endo, S., Franklin, C. N., Golaz, J.-C., Hannay, C., Heus, T., Isotta, F. A., Dufresne, J.-L., Kang, I.-S., Kawai, H., Köhler, M., Larson, V. E., Liu, Y., Lock, A. P., Lohmann, U., Khairoutdinov, M. F., Molod, A. M., Neggers, R. A. J., Rasch, P., Sandu, I., Senkbeil, R., Siebesma, A. P., Drian, C. S.-L., Stevens, B., Suarez, M. J., Xu, K.-M., von Salzen, K., Webb, M. J., Wolf, A., Zhao, M.:
CGILS: Results from the first phase of an international project to understand
the physical mechanisms of low cloud feedbacks in single column models,
J. Adv. Model. Earth Syst., 5, 826–842, 2013. a, b
Zipser, E.: Mesoscale and convective scale downdrafts as distinct components
of squall-line structure, Mon. Weather Rev., 105, 1568–1589, 1977. a
Short summary
Water molecules can be light (one oxygen atom and two hydrogen atoms) or heavy (one hydrogen atom is replaced by a deuterium atom). These different molecules are called water isotopes. The isotopic composition of water vapor can potentially provide information about physical processes along the water cycle, but the factors controlling it are complex. As a first step, we propose an equation to predict the water vapor isotopic composition near the surface of tropical oceans.
Water molecules can be light (one oxygen atom and two hydrogen atoms) or heavy (one hydrogen...
Altmetrics
Final-revised paper
Preprint