Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
ACP | Articles | Volume 19, issue 18
Atmos. Chem. Phys., 19, 11651–11668, 2019
https://doi.org/10.5194/acp-19-11651-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: EARLINET aerosol profiling: contributions to atmospheric and...

Atmos. Chem. Phys., 19, 11651–11668, 2019
https://doi.org/10.5194/acp-19-11651-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 17 Sep 2019

Research article | 17 Sep 2019

Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne

Francisco Navas-Guzmán et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Francisco Navas-Guzmán on behalf of the Authors (23 Jul 2019)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (31 Jul 2019) by Eduardo Landulfo
RR by Anonymous Referee #2 (07 Aug 2019)
RR by Anonymous Referee #1 (07 Aug 2019)
ED: Publish subject to minor revisions (review by editor) (07 Aug 2019) by Eduardo Landulfo
AR by Francisco Navas-Guzmán on behalf of the Authors (08 Aug 2019)  Author's response    Manuscript
ED: Publish as is (09 Aug 2019) by Eduardo Landulfo
Publications Copernicus
Download
Short summary
The present study demonstrates the capability of a Raman lidar to monitor aerosol hygroscopic processes. The results showed a higher hygroscopicity and wavelength dependency for smoke particles than for mineral dust. The higher sensitivity of the shortest wavelength to hygroscopic growth found for smoke particles was qualitatively reproduced using Mie simulations. The impact of aerosol hygroscopicity on the Earth's radiative balance has been evaluated using a radiative transfer model.
The present study demonstrates the capability of a Raman lidar to monitor aerosol hygroscopic...
Citation
Altmetrics
Final-revised paper
Preprint