Articles | Volume 19, issue 16
Atmos. Chem. Phys., 19, 10817–10828, 2019
https://doi.org/10.5194/acp-19-10817-2019
Atmos. Chem. Phys., 19, 10817–10828, 2019
https://doi.org/10.5194/acp-19-10817-2019

Research article 27 Aug 2019

Research article | 27 Aug 2019

Halogen activation and radical cycling initiated by imidazole-2-carboxaldehyde photochemistry

Pablo Corral Arroyo et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Markus Ammann on behalf of the Authors (11 Jul 2019)  Author's response    Manuscript
ED: Publish as is (22 Jul 2019) by Dwayne Heard
Download
Short summary
Oxidation of bromide and iodide is an important process in the troposphere that leads to gas-phase halogen compounds which impact the oxidation capacity of the atmosphere. Imidazole-2-carboxaldehyde (IC), an aromatic carbonyl, is a product of the multiphase chemistry of glyoxal (an oxidation product of isoprene), a major biogenic volatile organic compound. In this study we demonstrate that IC photochemistry leads to efficient oxidation of bromide and iodide and liberation of halogen compounds.
Altmetrics
Final-revised paper
Preprint