Articles | Volume 18, issue 12
https://doi.org/10.5194/acp-18-8505-2018
https://doi.org/10.5194/acp-18-8505-2018
Research article
 | 
18 Jun 2018
Research article |  | 18 Jun 2018

Sensitivities of modelled water vapour in the lower stratosphere: temperature uncertainty, effects of horizontal transport and small-scale mixing

Liubov Poshyvailo, Rolf Müller, Paul Konopka, Gebhard Günther, Martin Riese, Aurélien Podglajen, and Felix Ploeger

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Liubov Poshyvailo-Strube on behalf of the Authors (23 Mar 2018)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (09 Apr 2018) by Peter Haynes
RR by Rei Ueyama (24 Apr 2018)
RR by Anonymous Referee #2 (25 Apr 2018)
ED: Publish subject to technical corrections (10 May 2018) by Peter Haynes
AR by Liubov Poshyvailo-Strube on behalf of the Authors (18 May 2018)  Manuscript 
Download
Short summary
Water vapour (H2O) in the UTLS is a key player for global radiation, which is critical for predictions of future climate change. We investigate the effects of current uncertainties in tropopause temperature, horizontal transport and small-scale mixing on simulated H2O, using the Chemical Lagrangian Model of the Stratosphere. Our sensitivity studies provide new insights into the leading processes controlling stratospheric H2O, important for assessing and improving climate model projections.
Altmetrics
Final-revised paper
Preprint