Articles | Volume 18, issue 10
https://doi.org/10.5194/acp-18-7557-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-18-7557-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring
Andrea Pazmiño
CORRESPONDING AUTHOR
LATMOS, UVSQ Univ. Paris Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
Sophie Godin-Beekmann
LATMOS, UVSQ Univ. Paris Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
Alain Hauchecorne
LATMOS, UVSQ Univ. Paris Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
Chantal Claud
LMD, CNRS, Ecole Polytechnique, Palaiseau, France
Sergey Khaykin
LATMOS, UVSQ Univ. Paris Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
Florence Goutail
LATMOS, UVSQ Univ. Paris Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
Elian Wolfram
CEILAP-UNIDEF (MINDEF-CONICET), UMI-IFAECI-CNRS-3351, Villa Martelli, Argentina
Universidad Tecnológica Nacional, Facultad Regional Bs. As. (UTN-FRBA), Ciudad Autónoma de Buenos Aires, Argentina
Jacobo Salvador
CEILAP-UNIDEF (MINDEF-CONICET), UMI-IFAECI-CNRS-3351, Villa Martelli, Argentina
Universidad Tecnológica Nacional, Facultad Regional Bs. As. (UTN-FRBA), Ciudad Autónoma de Buenos Aires, Argentina
Universidad Nacional de la Patagonia Austral, Unidad Académica Río Gallegos (UNPA-UARG), Río Gallegos, Argentina
Eduardo Quel
CEILAP-UNIDEF (MINDEF-CONICET), UMI-IFAECI-CNRS-3351, Villa Martelli, Argentina
Viewed
Total article views: 3,628 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Dec 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,593 | 955 | 80 | 3,628 | 200 | 74 | 76 |
- HTML: 2,593
- PDF: 955
- XML: 80
- Total: 3,628
- Supplement: 200
- BibTeX: 74
- EndNote: 76
Total article views: 2,989 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 31 May 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,233 | 692 | 64 | 2,989 | 200 | 64 | 61 |
- HTML: 2,233
- PDF: 692
- XML: 64
- Total: 2,989
- Supplement: 200
- BibTeX: 64
- EndNote: 61
Total article views: 639 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Dec 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
360 | 263 | 16 | 639 | 10 | 15 |
- HTML: 360
- PDF: 263
- XML: 16
- Total: 639
- BibTeX: 10
- EndNote: 15
Viewed (geographical distribution)
Total article views: 3,628 (including HTML, PDF, and XML)
Thereof 3,572 with geography defined
and 56 with unknown origin.
Total article views: 2,989 (including HTML, PDF, and XML)
Thereof 2,954 with geography defined
and 35 with unknown origin.
Total article views: 639 (including HTML, PDF, and XML)
Thereof 618 with geography defined
and 21 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
30 citations as recorded by crossref.
- Validation and Trend Analysis of Stratospheric Ozone Data from Ground-Based Observations at Lauder, New Zealand L. Bernet et al. 10.3390/rs13010109
- Ground-based ozone profiles over central Europe: incorporating anomalous observations into the analysis of stratospheric ozone trends L. Bernet et al. 10.5194/acp-19-4289-2019
- The use of QBO, ENSO, and NAO perturbations in the evaluation of GOME-2 MetOp A total ozone measurements K. Eleftheratos et al. 10.5194/amt-12-987-2019
- Representativeness of the Arosa/Davos Measurements for the Analysis of the Global Total Column Ozone Behavior E. Rozanov et al. 10.3389/feart.2021.675084
- Trends and variability of total column ozone in the Third Pole J. Kuttippurath et al. 10.3389/fclim.2023.1129660
- Is the Antarctic Ozone Hole Recovering Faster than Changing the Stratospheric Halogen Loading? J. KRZYŚCIN 10.2151/jmsj.2020-055
- Validations of satellite ozone profiles in austral spring using ozonesonde measurements in the Jang Bogo station, Antarctica H. Lee et al. 10.1016/j.envres.2022.114087
- On Recent Large Antarctic Ozone Holes and Ozone Recovery Metrics K. Stone et al. 10.1029/2021GL095232
- The spatiotemporal variations of total column ozone concentration over Ethiopia A. Alemu et al. 10.1063/5.0143718
- No severe ozone depletion in the tropical stratosphere in recent decades J. Kuttippurath et al. 10.5194/acp-24-6743-2024
- Spatiotemporal Variation, Driving Mechanism and Predictive Study of Total Column Ozone: A Case Study in the Yangtze River Delta Urban Agglomerations P. Zhou et al. 10.3390/rs14184576
- Inconsistencies between chemistry–climate models and observed lower stratospheric ozone trends since 1998 W. Ball et al. 10.5194/acp-20-9737-2020
- Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019 G. Bernhard et al. 10.1039/d0pp90011g
- Total ozone trends at three northern high-latitude stations L. Bernet et al. 10.5194/acp-23-4165-2023
- Ozone—climate interactions and effects on solar ultraviolet radiation A. Bais et al. 10.1039/c8pp90059k
- Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model S. Godin-Beekmann et al. 10.5194/acp-22-11657-2022
- Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020 A. Lecouffe et al. 10.5194/acp-22-4187-2022
- The future ozone trends in changing climate simulated with SOCOLv4 A. Karagodin-Doyennel et al. 10.5194/acp-23-4801-2023
- Why Do Antarctic Ozone Recovery Trends Vary? S. Strahan et al. 10.1029/2019JD030996
- Signs of the ozone recovery based on multi sensor reanalysis of total ozone for the period 1979–2017 J. Krzyścin & D. Baranowski 10.1016/j.atmosenv.2018.11.050
- South Pole Station ozonesondes: variability and trends in the springtime Antarctic ozone hole 1986–2021 B. Johnson et al. 10.5194/acp-23-3133-2023
- Persistent extreme ultraviolet irradiance in Antarctica despite the ozone recovery onset R. Cordero et al. 10.1038/s41598-022-05449-8
- Chemical ozone loss and chlorine activation in the Antarctic winters of 2013–2020 R. Roy et al. 10.5194/acp-24-2377-2024
- Springtime evolution of stratospheric ozone and circulation patterns over Svalbard archipelago in 2019 and 2020 D. Tichopád et al. 10.5817/CPR2023-2-21
- Potential drivers of the recent large Antarctic ozone holes H. Kessenich et al. 10.1038/s41467-023-42637-0
- Earth beyond six of nine planetary boundaries K. Richardson et al. 10.1126/sciadv.adh2458
- Assessment of spectral UV radiation at Marambio Base, Antarctic Peninsula K. Čížková et al. 10.5194/acp-23-4617-2023
- Short-term variability of total column ozone from the Dobson spectrophotometer measurements at Belsk, Poland, in the period 23 March 1963–31 December 2019 J. Krzyścin et al. 10.1080/16000889.2021.1912958
- Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column A. Pazmiño et al. 10.5194/acp-23-15655-2023
- Stratospheric ozone, UV radiation, and climate interactions G. Bernhard et al. 10.1007/s43630-023-00371-y
30 citations as recorded by crossref.
- Validation and Trend Analysis of Stratospheric Ozone Data from Ground-Based Observations at Lauder, New Zealand L. Bernet et al. 10.3390/rs13010109
- Ground-based ozone profiles over central Europe: incorporating anomalous observations into the analysis of stratospheric ozone trends L. Bernet et al. 10.5194/acp-19-4289-2019
- The use of QBO, ENSO, and NAO perturbations in the evaluation of GOME-2 MetOp A total ozone measurements K. Eleftheratos et al. 10.5194/amt-12-987-2019
- Representativeness of the Arosa/Davos Measurements for the Analysis of the Global Total Column Ozone Behavior E. Rozanov et al. 10.3389/feart.2021.675084
- Trends and variability of total column ozone in the Third Pole J. Kuttippurath et al. 10.3389/fclim.2023.1129660
- Is the Antarctic Ozone Hole Recovering Faster than Changing the Stratospheric Halogen Loading? J. KRZYŚCIN 10.2151/jmsj.2020-055
- Validations of satellite ozone profiles in austral spring using ozonesonde measurements in the Jang Bogo station, Antarctica H. Lee et al. 10.1016/j.envres.2022.114087
- On Recent Large Antarctic Ozone Holes and Ozone Recovery Metrics K. Stone et al. 10.1029/2021GL095232
- The spatiotemporal variations of total column ozone concentration over Ethiopia A. Alemu et al. 10.1063/5.0143718
- No severe ozone depletion in the tropical stratosphere in recent decades J. Kuttippurath et al. 10.5194/acp-24-6743-2024
- Spatiotemporal Variation, Driving Mechanism and Predictive Study of Total Column Ozone: A Case Study in the Yangtze River Delta Urban Agglomerations P. Zhou et al. 10.3390/rs14184576
- Inconsistencies between chemistry–climate models and observed lower stratospheric ozone trends since 1998 W. Ball et al. 10.5194/acp-20-9737-2020
- Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019 G. Bernhard et al. 10.1039/d0pp90011g
- Total ozone trends at three northern high-latitude stations L. Bernet et al. 10.5194/acp-23-4165-2023
- Ozone—climate interactions and effects on solar ultraviolet radiation A. Bais et al. 10.1039/c8pp90059k
- Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model S. Godin-Beekmann et al. 10.5194/acp-22-11657-2022
- Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020 A. Lecouffe et al. 10.5194/acp-22-4187-2022
- The future ozone trends in changing climate simulated with SOCOLv4 A. Karagodin-Doyennel et al. 10.5194/acp-23-4801-2023
- Why Do Antarctic Ozone Recovery Trends Vary? S. Strahan et al. 10.1029/2019JD030996
- Signs of the ozone recovery based on multi sensor reanalysis of total ozone for the period 1979–2017 J. Krzyścin & D. Baranowski 10.1016/j.atmosenv.2018.11.050
- South Pole Station ozonesondes: variability and trends in the springtime Antarctic ozone hole 1986–2021 B. Johnson et al. 10.5194/acp-23-3133-2023
- Persistent extreme ultraviolet irradiance in Antarctica despite the ozone recovery onset R. Cordero et al. 10.1038/s41598-022-05449-8
- Chemical ozone loss and chlorine activation in the Antarctic winters of 2013–2020 R. Roy et al. 10.5194/acp-24-2377-2024
- Springtime evolution of stratospheric ozone and circulation patterns over Svalbard archipelago in 2019 and 2020 D. Tichopád et al. 10.5817/CPR2023-2-21
- Potential drivers of the recent large Antarctic ozone holes H. Kessenich et al. 10.1038/s41467-023-42637-0
- Earth beyond six of nine planetary boundaries K. Richardson et al. 10.1126/sciadv.adh2458
- Assessment of spectral UV radiation at Marambio Base, Antarctic Peninsula K. Čížková et al. 10.5194/acp-23-4617-2023
- Short-term variability of total column ozone from the Dobson spectrophotometer measurements at Belsk, Poland, in the period 23 March 1963–31 December 2019 J. Krzyścin et al. 10.1080/16000889.2021.1912958
- Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column A. Pazmiño et al. 10.5194/acp-23-15655-2023
- Stratospheric ozone, UV radiation, and climate interactions G. Bernhard et al. 10.1007/s43630-023-00371-y
Saved (final revised paper)
Discussed (final revised paper)
Latest update: 06 Jan 2025
Short summary
The article mentions several symptoms of recovery. Multilinear regression analysis provides significant increase since 2001 of total ozone in Sept and during the period of maximum ozone destruction (15 Sept–15 Oct). There is significant decrease of ozone mass deficit for the same periods, decrease of relative area of total ozone values lower than 175 DU within the vortex (1 Sept–15 Oct since 2010) and a delay in the occurrence of ozone levels below 125 DU since 2005 for the 1 Sept–15 Oct period.
The article mentions several symptoms of recovery. Multilinear regression analysis provides...
Special issue
Altmetrics
Final-revised paper
Preprint