Articles | Volume 18, issue 19
https://doi.org/10.5194/acp-18-14493-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-14493-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study
Department of Meteorology and Atmospheric Science, Pennsylvania
State University, University Park, PA, USA
Xinrong Ren
Department of
Atmospheric and Oceanic Science, University of Maryland, College Park, MD,
USA
Air Resources Laboratory, National Oceanic and Atmospheric
Administration, College Park, MD, USA
Li Zhang
Department of Meteorology and Atmospheric Science, Pennsylvania
State University, University Park, PA, USA
Jingqiu Mao
Department of Chemistry and
Biochemistry, University of Alaska, Fairbanks, Fairbanks, AK, USA
David O. Miller
Department of Meteorology and Atmospheric Science, Pennsylvania
State University, University Park, PA, USA
Bruce E. Anderson
Chemistry and Dynamics Branch, NASA Langley Research Center,
Hampton, VA, USA
Donald R. Blake
Department of Chemistry, University of
California, Irvine, CA, USA
Ronald C. Cohen
Departments of Chemistry and Earth and
Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
Glenn S. Diskin
Chemistry and Dynamics Branch, NASA Langley Research Center,
Hampton, VA, USA
Samuel R. Hall
Atmospheric Chemistry Observations and Modeling Laboratory,
National Center for Atmospheric Research, Boulder, CO, USA
Thomas F. Hanisco
Atmospheric Chemistry and Dynamics Branch, Goddard Space Flight
Center, Greenbelt, MD, USA
L. Gregory Huey
School of Earth and Atmospheric
Sciences, Georgia Institute of Technology, Atlanta, GA, USA
Benjamin A. Nault
Department of Earth and Planetary Sciences, University of
California, Berkeley, Berkeley, CA, USA
now at: Cooperative Institute for Research
in Environmental Sciences, University of Colorado, Boulder, CO, USA
Jeff Peischl
Cooperative Institute for
Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
Earth System Research Laboratory, National Oceanic and Atmospheric
Administration, Boulder, CO, USA
Ilana Pollack
Cooperative Institute for
Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
Earth System Research Laboratory, National Oceanic and Atmospheric
Administration, Boulder, CO, USA
now at: Department of Atmospheric Science, Colorado State
University, Fort Collins, CO, USA
Thomas B. Ryerson
Earth System Research Laboratory, National Oceanic and Atmospheric
Administration, Boulder, CO, USA
Taylor Shingler
Science Systems and
Applications, Inc., Hampton, VA, USA
Atmospheric Composition
Branch, NASA Langley Research Center, Hampton, VA, USA
Armin Sorooshian
Department
of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ,
USA
Department of Hydrology and Atmospheric Sciences, University
of Arizona, Tucson, AZ, USA
Kirk Ullmann
Atmospheric Chemistry Observations and Modeling Laboratory,
National Center for Atmospheric Research, Boulder, CO, USA
Armin Wisthaler
Department of Chemistry, University
of Oslo, Oslo, Norway
Paul J. Wooldridge
Departments of Chemistry and Earth and
Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
Data sets
DC3 DC-8 data http://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs https://doi.org/10.5067/Aircraft/DC3/DC8/Aerosol-TraceGas
Model code and software
The Framework for 0-D Atmospheric Modeling (F0AM) v3.1 Wolfe, G.M, Marvin, M.R., Roberts, S.J., Travis, K.R., and Liao, J. https://doi.org/10.5194/gmd-9-3309-2016
Short summary
Thunderstorms pull in polluted air from near the ground, transport it up through clouds containing lightning, and deposit it at altitudes where airplanes fly. The resulting chemical mixture in this air reacts to form ozone and particles, which affect climate. In this study, aircraft observations of the reactive gases responsible for this chemistry generally agree with modeled values, even in ice clouds. Thus, atmospheric oxidation chemistry appears to be mostly understood for this environment.
Thunderstorms pull in polluted air from near the ground, transport it up through clouds...
Altmetrics
Final-revised paper
Preprint