Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
Black carbon (BC) particles emitted by natural and anthropogenic sources (e.g., wildfires, coal burning) can amplify climate warming by increasing sunlight energy absorption on snow-covered surfaces. This paper presents a new ice-core record of historical (1810–1990) BC deposition in the Canadian Arctic. The Devon ice cap record differs from Greenland ice cores, implying large variations in BC deposition across the Arctic that must be accounted for to better quantity their future climate impact.
Altmetrics
Final-revised paper
Preprint
Articles | Volume 18, issue 16
Atmos. Chem. Phys., 18, 12345–12361, 2018
https://doi.org/10.5194/acp-18-12345-2018
Atmos. Chem. Phys., 18, 12345–12361, 2018
https://doi.org/10.5194/acp-18-12345-2018

Research article 27 Aug 2018

Research article | 27 Aug 2018

Historical black carbon deposition in the Canadian High Arctic: a >250-year long ice-core record from Devon Island

Christian M. Zdanowicz et al.

Viewed

Total article views: 1,718 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,068 604 46 1,718 144 29 43
  • HTML: 1,068
  • PDF: 604
  • XML: 46
  • Total: 1,718
  • Supplement: 144
  • BibTeX: 29
  • EndNote: 43
Views and downloads (calculated since 04 Oct 2017)
Cumulative views and downloads (calculated since 04 Oct 2017)

Viewed (geographical distribution)

Total article views: 1,735 (including HTML, PDF, and XML) Thereof 1,720 with geography defined and 15 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 17 Jan 2021
Publications Copernicus
Download
Short summary
Black carbon (BC) particles emitted by natural and anthropogenic sources (e.g., wildfires, coal burning) can amplify climate warming by increasing sunlight energy absorption on snow-covered surfaces. This paper presents a new ice-core record of historical (1810–1990) BC deposition in the Canadian Arctic. The Devon ice cap record differs from Greenland ice cores, implying large variations in BC deposition across the Arctic that must be accounted for to better quantity their future climate impact.
Citation
Altmetrics
Final-revised paper
Preprint