Articles | Volume 18, issue 15
https://doi.org/10.5194/acp-18-10881-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-10881-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar measurements from 2006 to 2017
Michael C. Pitts
CORRESPONDING AUTHOR
NASA Langley Research Center, Hampton, Virginia 23681, USA
Lamont R. Poole
Science Systems and Applications, Inc., Hampton, Virginia 23666, USA
Ryan Gonzalez
Universities Space Research Association, NASA Langley Research Center,
Hampton, VA 23681, USA
now at: Department of Atmospheric Science, Colorado State University,
Fort Collins, CO 80523, USA
Related authors
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech., 16, 745–768, https://doi.org/10.5194/amt-16-745-2023, https://doi.org/10.5194/amt-16-745-2023, 2023
Short summary
Short summary
The accurate identification of aerosol types in the stratosphere is important to characterize their impacts on the Earth climate system. The space-borne lidar on board CALIPSO is well-posed to identify aerosols in the stratosphere from volcanic eruptions and major wildfire events. This paper describes improvements implemented in the version 4.5 CALIPSO data release to more accurately discriminate between volcanic ash, sulfate, and smoke within the stratosphere.
Marcel Snels, Francesco Colao, Francesco Cairo, Ilir Shuli, Andrea Scoccione, Mauro De Muro, Michael Pitts, Lamont Poole, and Luca Di Liberto
Atmos. Chem. Phys., 21, 2165–2178, https://doi.org/10.5194/acp-21-2165-2021, https://doi.org/10.5194/acp-21-2165-2021, 2021
Short summary
Short summary
A total of 5 years of polar stratospheric cloud (PSC) observations by ground-based lidar at Concordia station (Antarctica) are presented. These data have been recorded in coincidence with the overpasses of the CALIOP lidar on the CALIPSO satellite. First we demonstrate that both lidars observe essentially the same thing, in terms of detection and composition of the PSCs. Then we use both datasets to study seasonal and interannual variations in the formation temperature of NAT mixtures.
Michael Steiner, Beiping Luo, Thomas Peter, Michael C. Pitts, and Andrea Stenke
Geosci. Model Dev., 14, 935–959, https://doi.org/10.5194/gmd-14-935-2021, https://doi.org/10.5194/gmd-14-935-2021, 2021
Short summary
Short summary
We evaluate polar stratospheric clouds (PSCs) as simulated by the chemistry–climate model (CCM) SOCOLv3.1 in comparison with measurements by the CALIPSO satellite. A cold bias results in an overestimated PSC area and mountain-wave ice is underestimated, but we find overall good temporal and spatial agreement of PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes may also achieve good approximations of the fundamental properties of PSCs.
Matthias Tesche, Peggy Achtert, and Michael C. Pitts
Atmos. Chem. Phys., 21, 505–516, https://doi.org/10.5194/acp-21-505-2021, https://doi.org/10.5194/acp-21-505-2021, 2021
Short summary
Short summary
We combine spaceborne lidar observations of clouds in the troposphere and stratosphere to assess the outcome of ground-based polar stratospheric cloud (PSC) observations that are often performed at the mercy of tropospheric clouds. We find that the outcome of ground-based lidar measurements of PSCs depends on the location of the measurement. We also provide recommendations regarding the most suitable sites in the Arctic and Antarctic.
Marcel Snels, Andrea Scoccione, Luca Di Liberto, Francesco Colao, Michael Pitts, Lamont Poole, Terry Deshler, Francesco Cairo, Chiara Cagnazzo, and Federico Fierli
Atmos. Chem. Phys., 19, 955–972, https://doi.org/10.5194/acp-19-955-2019, https://doi.org/10.5194/acp-19-955-2019, 2019
Short summary
Short summary
Polar stratospheric clouds are important for stratospheric chemistry and ozone depletion. Here we statistically compare ground-based and satellite-borne lidar measurements at McMurdo (Antarctica) in order to better understand the differences between ground-based and satellite-borne observations. The satellite observations have also been compared to models used in CCMVAL-2 and CCMI studies, with the goal of testing different diagnostic methods for comparing observations with model outputs.
Ines Tritscher, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 543–563, https://doi.org/10.5194/acp-19-543-2019, https://doi.org/10.5194/acp-19-543-2019, 2019
Short summary
Short summary
We present Lagrangian simulations of polar stratospheric clouds (PSCs) for the Arctic winter 2009/2010 and the Antarctic winter 2011 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The paper comprises a detailed model description with ice PSCs and related dehydration being the focus of this study. Comparisons between our simulations and observations from different satellites on season-long and vortex-wide scales as well as for single PSC events show an overall good agreement.
Man-Hae Kim, Ali H. Omar, Jason L. Tackett, Mark A. Vaughan, David M. Winker, Charles R. Trepte, Yongxiang Hu, Zhaoyan Liu, Lamont R. Poole, Michael C. Pitts, Jayanta Kar, and Brian E. Magill
Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, https://doi.org/10.5194/amt-11-6107-2018, 2018
Short summary
Short summary
This paper discusses recent advances made in distinguishing among different aerosols species detected in the CALIPSO lidar measurements. A new classification algorithm now classifies four different aerosol types in the stratosphere, and the number of aerosol types recognized in the troposphere has increased from six to seven. The lidar ratios characterizing each type have been updated and the effects of these changes on CALIPSO retrievals of aerosol optical depth are examined in detail.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Michael C. Pitts, Lamont R. Poole, Robert Baumann, Benedikt Ehard, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 15623–15641, https://doi.org/10.5194/acp-18-15623-2018, https://doi.org/10.5194/acp-18-15623-2018, 2018
Short summary
Short summary
The 2015–2016 stratospheric winter was the coldest in the 36-year climatological data record. The extreme conditions promoted the formation of persistent Arctic polar stratospheric ice clouds. An extended ice PSC detected by airborne lidar in January 2016 shows a second mode with higher particle depolarization ratios. Back-trajectories from the high-depol ice matched to CALIOP PSC curtains provide evidence for ice nucleation on NAT. The novel data consolidate our understanding of PSC formation.
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901–5923, https://doi.org/10.5194/amt-11-5901-2018, https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Short summary
Polar stratospheric clouds (PSC) have major relevance to the processes leading to polar ozone depletion. A good understanding of these particles is a prerequisite to predict their role in a changing climate. We present the first global set of PSC volume density profiles derived from the MIPAS satellite measurements covering the entire mission period between 2002 and 2012. A comparison to CALIOP lidar measurements is provided. The dataset can serve as a basis for evaluation of atmospheric models.
Reinhold Spang, Lars Hoffmann, Rolf Müller, Jens-Uwe Grooß, Ines Tritscher, Michael Höpfner, Michael Pitts, Andrew Orr, and Martin Riese
Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, https://doi.org/10.5194/acp-18-5089-2018, 2018
Short summary
Short summary
This paper represents an unprecedented pole-covering day- and nighttime climatology of the polar stratospheric clouds (PSCs) based on satellite measurements, their spatial distribution, and composition of different particle types. The climatology has a high potential for the validation and improvement of PSC schemes in chemical transport and chemistry–climate models, which is important for a better prediction of future polar ozone loss in a changing climate.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Robert Baumann, Benedikt Ehard, Michael C. Pitts, Lamont R. Poole, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1082, https://doi.org/10.5194/acp-2016-1082, 2016
Revised manuscript not accepted
Short summary
Short summary
The letter describes unprecedented observations of widespread and persistent polar stratospheric ice clouds (ice PSCs) in the exceptionally cold Arctic stratospheric winter 2015/16. The unique observations are of global relevance because trends in Arctic ozone loss and in polar temperatures are highly uncertain. The new observations at cold conditions serve to enhance our knowledge on ice PSC formation, Arctic ozone loss and polar stratrospheric temperatures in a changing climate.
Reinhold Spang, Lars Hoffmann, Michael Höpfner, Sabine Griessbach, Rolf Müller, Michael C. Pitts, Andrew M. W. Orr, and Martin Riese
Atmos. Meas. Tech., 9, 3619–3639, https://doi.org/10.5194/amt-9-3619-2016, https://doi.org/10.5194/amt-9-3619-2016, 2016
Short summary
Short summary
We present a new classification approach for different polar stratospheric cloud types. The so-called Bayesian classifier estimates the most likely probability that one of the three PSC types (ice, NAT, or STS) dominates the characteristics of a measured infrared spectrum. The entire measurement period of the satellite instrument MIPAS from July 2002 to April 2013 is processed using the new classifier.
Wolfgang Woiwode, Michael Höpfner, Lei Bi, Michael C. Pitts, Lamont R. Poole, Hermann Oelhaf, Sergej Molleker, Stephan Borrmann, Marcus Klingebiel, Gennady Belyaev, Andreas Ebersoldt, Sabine Griessbach, Jens-Uwe Grooß, Thomas Gulde, Martina Krämer, Guido Maucher, Christof Piesch, Christian Rolf, Christian Sartorius, Reinhold Spang, and Johannes Orphal
Atmos. Chem. Phys., 16, 9505–9532, https://doi.org/10.5194/acp-16-9505-2016, https://doi.org/10.5194/acp-16-9505-2016, 2016
Short summary
Short summary
The analysis of spectral signatures of a polar stratospheric cloud in airborne infrared remote sensing observations in the Arctic in combination with further collocated measurements supports the view that the observed cloud consisted of highly aspherical nitric acid trihydrate particles. A characteristic "shoulder-like" spectral signature may be exploited for identification of large, highly aspherical nitric acid trihydrate particles involved in denitrification of the polar winter stratosphere.
Tobias Wegner, Michael C. Pitts, Lamont R. Poole, Ines Tritscher, Jens-Uwe Grooß, and Hideaki Nakajima
Atmos. Chem. Phys., 16, 4569–4577, https://doi.org/10.5194/acp-16-4569-2016, https://doi.org/10.5194/acp-16-4569-2016, 2016
Short summary
Short summary
Satellite observations are used to constrain areas with large backscatter values areas inside the polar vortex. Surface area is derived from these observations and used in heterogeneous modeling. Satellite gas species observations show a decrease in HCl downwind of areas with large surface area density indicating heterogeneous processing inside these areas. This decrease can only be simulated if a realistic surface area is assumed demonstrating the importance of polar stratospheric cloud.
Hideaki Nakajima, Ingo Wohltmann, Tobias Wegner, Masanori Takeda, Michael C. Pitts, Lamont R. Poole, Ralph Lehmann, Michelle L. Santee, and Markus Rex
Atmos. Chem. Phys., 16, 3311–3325, https://doi.org/10.5194/acp-16-3311-2016, https://doi.org/10.5194/acp-16-3311-2016, 2016
Short summary
Short summary
This paper presents the first trial of analyzing amount of chlorine activation on different PSC compositions by using match analysis on trajectories initiated from PSC locations identified by CALIPSO/CALIOP measurements. The measured minor species such as HCl and ClO by MLS are compared with ATLAS chemistry-transport model (CTM) results. PSC growth to NAT, NAT/STS mixture, and ice were identified by different temperature decrease histories on trajectories.
F. Khosrawi, J. Urban, S. Lossow, G. Stiller, K. Weigel, P. Braesicke, M. C. Pitts, A. Rozanov, J. P. Burrows, and D. Murtagh
Atmos. Chem. Phys., 16, 101–121, https://doi.org/10.5194/acp-16-101-2016, https://doi.org/10.5194/acp-16-101-2016, 2016
Short summary
Short summary
Our sensitivity studies based on air parcel trajectories confirm that Polar stratospheric cloud (PSC) formation is quite sensitive to water vapour and temperature changes. Considering water vapour time series from satellite measurements we do not find a consistent, significant trend in water vapour in the lower stratosphere during the past 15 years (2000–2014). Thus, the severe dentrification observed in 2010/2011 cannot be directly related to increases in stratospheric water vapour.
G. L. Manney, Z. D. Lawrence, M. L. Santee, N. J. Livesey, A. Lambert, and M. C. Pitts
Atmos. Chem. Phys., 15, 5381–5403, https://doi.org/10.5194/acp-15-5381-2015, https://doi.org/10.5194/acp-15-5381-2015, 2015
Short summary
Short summary
Sudden stratospheric warmings (SSWs) cause a rapid rise in lower stratospheric temperatures, terminating conditions favorable to chemical ozone loss. We show that although temperatures rose precipitously during the vortex split SSW in early Jan 2013, because the offspring vortices each remained isolated and in regions that received sunlight, chemical ozone loss continued for over 1 month after the SSW. Dec/Jan Arctic ozone loss was larger than any previously observed during that period.
I. Engel, B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J.-U. Grooß, M. C. Pitts, and T. Peter
Atmos. Chem. Phys., 14, 3231–3246, https://doi.org/10.5194/acp-14-3231-2014, https://doi.org/10.5194/acp-14-3231-2014, 2014
J.-U. Grooß, I. Engel, S. Borrmann, W. Frey, G. Günther, C. R. Hoyle, R. Kivi, B. P. Luo, S. Molleker, T. Peter, M. C. Pitts, H. Schlager, G. Stiller, H. Vömel, K. A. Walker, and R. Müller
Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014, https://doi.org/10.5194/acp-14-1055-2014, 2014
S. M. Khaykin, I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer, A. D. Lykov, S. Meier, T. Naebert, M. C. Pitts, M. L. Santee, N. Spelten, F. G. Wienhold, V. A. Yushkov, and T. Peter
Atmos. Chem. Phys., 13, 11503–11517, https://doi.org/10.5194/acp-13-11503-2013, https://doi.org/10.5194/acp-13-11503-2013, 2013
I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, C. R. Hoyle, J.-U. Grooß, A. Dörnbrack, and T. Peter
Atmos. Chem. Phys., 13, 10769–10785, https://doi.org/10.5194/acp-13-10769-2013, https://doi.org/10.5194/acp-13-10769-2013, 2013
C. R. Hoyle, I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, J.-U. Grooß, and T. Peter
Atmos. Chem. Phys., 13, 9577–9595, https://doi.org/10.5194/acp-13-9577-2013, https://doi.org/10.5194/acp-13-9577-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
M. C. Pitts, L. R. Poole, A. Lambert, and L. W. Thomason
Atmos. Chem. Phys., 13, 2975–2988, https://doi.org/10.5194/acp-13-2975-2013, https://doi.org/10.5194/acp-13-2975-2013, 2013
Jason L. Tackett, Jayanta Kar, Mark A. Vaughan, Brian J. Getzewich, Man-Hae Kim, Jean-Paul Vernier, Ali H. Omar, Brian E. Magill, Michael C. Pitts, and David M. Winker
Atmos. Meas. Tech., 16, 745–768, https://doi.org/10.5194/amt-16-745-2023, https://doi.org/10.5194/amt-16-745-2023, 2023
Short summary
Short summary
The accurate identification of aerosol types in the stratosphere is important to characterize their impacts on the Earth climate system. The space-borne lidar on board CALIPSO is well-posed to identify aerosols in the stratosphere from volcanic eruptions and major wildfire events. This paper describes improvements implemented in the version 4.5 CALIPSO data release to more accurately discriminate between volcanic ash, sulfate, and smoke within the stratosphere.
Marcel Snels, Francesco Colao, Francesco Cairo, Ilir Shuli, Andrea Scoccione, Mauro De Muro, Michael Pitts, Lamont Poole, and Luca Di Liberto
Atmos. Chem. Phys., 21, 2165–2178, https://doi.org/10.5194/acp-21-2165-2021, https://doi.org/10.5194/acp-21-2165-2021, 2021
Short summary
Short summary
A total of 5 years of polar stratospheric cloud (PSC) observations by ground-based lidar at Concordia station (Antarctica) are presented. These data have been recorded in coincidence with the overpasses of the CALIOP lidar on the CALIPSO satellite. First we demonstrate that both lidars observe essentially the same thing, in terms of detection and composition of the PSCs. Then we use both datasets to study seasonal and interannual variations in the formation temperature of NAT mixtures.
Michael Steiner, Beiping Luo, Thomas Peter, Michael C. Pitts, and Andrea Stenke
Geosci. Model Dev., 14, 935–959, https://doi.org/10.5194/gmd-14-935-2021, https://doi.org/10.5194/gmd-14-935-2021, 2021
Short summary
Short summary
We evaluate polar stratospheric clouds (PSCs) as simulated by the chemistry–climate model (CCM) SOCOLv3.1 in comparison with measurements by the CALIPSO satellite. A cold bias results in an overestimated PSC area and mountain-wave ice is underestimated, but we find overall good temporal and spatial agreement of PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes may also achieve good approximations of the fundamental properties of PSCs.
Matthias Tesche, Peggy Achtert, and Michael C. Pitts
Atmos. Chem. Phys., 21, 505–516, https://doi.org/10.5194/acp-21-505-2021, https://doi.org/10.5194/acp-21-505-2021, 2021
Short summary
Short summary
We combine spaceborne lidar observations of clouds in the troposphere and stratosphere to assess the outcome of ground-based polar stratospheric cloud (PSC) observations that are often performed at the mercy of tropospheric clouds. We find that the outcome of ground-based lidar measurements of PSCs depends on the location of the measurement. We also provide recommendations regarding the most suitable sites in the Arctic and Antarctic.
Marcel Snels, Andrea Scoccione, Luca Di Liberto, Francesco Colao, Michael Pitts, Lamont Poole, Terry Deshler, Francesco Cairo, Chiara Cagnazzo, and Federico Fierli
Atmos. Chem. Phys., 19, 955–972, https://doi.org/10.5194/acp-19-955-2019, https://doi.org/10.5194/acp-19-955-2019, 2019
Short summary
Short summary
Polar stratospheric clouds are important for stratospheric chemistry and ozone depletion. Here we statistically compare ground-based and satellite-borne lidar measurements at McMurdo (Antarctica) in order to better understand the differences between ground-based and satellite-borne observations. The satellite observations have also been compared to models used in CCMVAL-2 and CCMI studies, with the goal of testing different diagnostic methods for comparing observations with model outputs.
Ines Tritscher, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 543–563, https://doi.org/10.5194/acp-19-543-2019, https://doi.org/10.5194/acp-19-543-2019, 2019
Short summary
Short summary
We present Lagrangian simulations of polar stratospheric clouds (PSCs) for the Arctic winter 2009/2010 and the Antarctic winter 2011 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The paper comprises a detailed model description with ice PSCs and related dehydration being the focus of this study. Comparisons between our simulations and observations from different satellites on season-long and vortex-wide scales as well as for single PSC events show an overall good agreement.
Man-Hae Kim, Ali H. Omar, Jason L. Tackett, Mark A. Vaughan, David M. Winker, Charles R. Trepte, Yongxiang Hu, Zhaoyan Liu, Lamont R. Poole, Michael C. Pitts, Jayanta Kar, and Brian E. Magill
Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, https://doi.org/10.5194/amt-11-6107-2018, 2018
Short summary
Short summary
This paper discusses recent advances made in distinguishing among different aerosols species detected in the CALIPSO lidar measurements. A new classification algorithm now classifies four different aerosol types in the stratosphere, and the number of aerosol types recognized in the troposphere has increased from six to seven. The lidar ratios characterizing each type have been updated and the effects of these changes on CALIPSO retrievals of aerosol optical depth are examined in detail.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Michael C. Pitts, Lamont R. Poole, Robert Baumann, Benedikt Ehard, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 15623–15641, https://doi.org/10.5194/acp-18-15623-2018, https://doi.org/10.5194/acp-18-15623-2018, 2018
Short summary
Short summary
The 2015–2016 stratospheric winter was the coldest in the 36-year climatological data record. The extreme conditions promoted the formation of persistent Arctic polar stratospheric ice clouds. An extended ice PSC detected by airborne lidar in January 2016 shows a second mode with higher particle depolarization ratios. Back-trajectories from the high-depol ice matched to CALIOP PSC curtains provide evidence for ice nucleation on NAT. The novel data consolidate our understanding of PSC formation.
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901–5923, https://doi.org/10.5194/amt-11-5901-2018, https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Short summary
Polar stratospheric clouds (PSC) have major relevance to the processes leading to polar ozone depletion. A good understanding of these particles is a prerequisite to predict their role in a changing climate. We present the first global set of PSC volume density profiles derived from the MIPAS satellite measurements covering the entire mission period between 2002 and 2012. A comparison to CALIOP lidar measurements is provided. The dataset can serve as a basis for evaluation of atmospheric models.
Reinhold Spang, Lars Hoffmann, Rolf Müller, Jens-Uwe Grooß, Ines Tritscher, Michael Höpfner, Michael Pitts, Andrew Orr, and Martin Riese
Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, https://doi.org/10.5194/acp-18-5089-2018, 2018
Short summary
Short summary
This paper represents an unprecedented pole-covering day- and nighttime climatology of the polar stratospheric clouds (PSCs) based on satellite measurements, their spatial distribution, and composition of different particle types. The climatology has a high potential for the validation and improvement of PSC schemes in chemical transport and chemistry–climate models, which is important for a better prediction of future polar ozone loss in a changing climate.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Robert Baumann, Benedikt Ehard, Michael C. Pitts, Lamont R. Poole, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1082, https://doi.org/10.5194/acp-2016-1082, 2016
Revised manuscript not accepted
Short summary
Short summary
The letter describes unprecedented observations of widespread and persistent polar stratospheric ice clouds (ice PSCs) in the exceptionally cold Arctic stratospheric winter 2015/16. The unique observations are of global relevance because trends in Arctic ozone loss and in polar temperatures are highly uncertain. The new observations at cold conditions serve to enhance our knowledge on ice PSC formation, Arctic ozone loss and polar stratrospheric temperatures in a changing climate.
Reinhold Spang, Lars Hoffmann, Michael Höpfner, Sabine Griessbach, Rolf Müller, Michael C. Pitts, Andrew M. W. Orr, and Martin Riese
Atmos. Meas. Tech., 9, 3619–3639, https://doi.org/10.5194/amt-9-3619-2016, https://doi.org/10.5194/amt-9-3619-2016, 2016
Short summary
Short summary
We present a new classification approach for different polar stratospheric cloud types. The so-called Bayesian classifier estimates the most likely probability that one of the three PSC types (ice, NAT, or STS) dominates the characteristics of a measured infrared spectrum. The entire measurement period of the satellite instrument MIPAS from July 2002 to April 2013 is processed using the new classifier.
Wolfgang Woiwode, Michael Höpfner, Lei Bi, Michael C. Pitts, Lamont R. Poole, Hermann Oelhaf, Sergej Molleker, Stephan Borrmann, Marcus Klingebiel, Gennady Belyaev, Andreas Ebersoldt, Sabine Griessbach, Jens-Uwe Grooß, Thomas Gulde, Martina Krämer, Guido Maucher, Christof Piesch, Christian Rolf, Christian Sartorius, Reinhold Spang, and Johannes Orphal
Atmos. Chem. Phys., 16, 9505–9532, https://doi.org/10.5194/acp-16-9505-2016, https://doi.org/10.5194/acp-16-9505-2016, 2016
Short summary
Short summary
The analysis of spectral signatures of a polar stratospheric cloud in airborne infrared remote sensing observations in the Arctic in combination with further collocated measurements supports the view that the observed cloud consisted of highly aspherical nitric acid trihydrate particles. A characteristic "shoulder-like" spectral signature may be exploited for identification of large, highly aspherical nitric acid trihydrate particles involved in denitrification of the polar winter stratosphere.
Tobias Wegner, Michael C. Pitts, Lamont R. Poole, Ines Tritscher, Jens-Uwe Grooß, and Hideaki Nakajima
Atmos. Chem. Phys., 16, 4569–4577, https://doi.org/10.5194/acp-16-4569-2016, https://doi.org/10.5194/acp-16-4569-2016, 2016
Short summary
Short summary
Satellite observations are used to constrain areas with large backscatter values areas inside the polar vortex. Surface area is derived from these observations and used in heterogeneous modeling. Satellite gas species observations show a decrease in HCl downwind of areas with large surface area density indicating heterogeneous processing inside these areas. This decrease can only be simulated if a realistic surface area is assumed demonstrating the importance of polar stratospheric cloud.
Hideaki Nakajima, Ingo Wohltmann, Tobias Wegner, Masanori Takeda, Michael C. Pitts, Lamont R. Poole, Ralph Lehmann, Michelle L. Santee, and Markus Rex
Atmos. Chem. Phys., 16, 3311–3325, https://doi.org/10.5194/acp-16-3311-2016, https://doi.org/10.5194/acp-16-3311-2016, 2016
Short summary
Short summary
This paper presents the first trial of analyzing amount of chlorine activation on different PSC compositions by using match analysis on trajectories initiated from PSC locations identified by CALIPSO/CALIOP measurements. The measured minor species such as HCl and ClO by MLS are compared with ATLAS chemistry-transport model (CTM) results. PSC growth to NAT, NAT/STS mixture, and ice were identified by different temperature decrease histories on trajectories.
F. Khosrawi, J. Urban, S. Lossow, G. Stiller, K. Weigel, P. Braesicke, M. C. Pitts, A. Rozanov, J. P. Burrows, and D. Murtagh
Atmos. Chem. Phys., 16, 101–121, https://doi.org/10.5194/acp-16-101-2016, https://doi.org/10.5194/acp-16-101-2016, 2016
Short summary
Short summary
Our sensitivity studies based on air parcel trajectories confirm that Polar stratospheric cloud (PSC) formation is quite sensitive to water vapour and temperature changes. Considering water vapour time series from satellite measurements we do not find a consistent, significant trend in water vapour in the lower stratosphere during the past 15 years (2000–2014). Thus, the severe dentrification observed in 2010/2011 cannot be directly related to increases in stratospheric water vapour.
G. L. Manney, Z. D. Lawrence, M. L. Santee, N. J. Livesey, A. Lambert, and M. C. Pitts
Atmos. Chem. Phys., 15, 5381–5403, https://doi.org/10.5194/acp-15-5381-2015, https://doi.org/10.5194/acp-15-5381-2015, 2015
Short summary
Short summary
Sudden stratospheric warmings (SSWs) cause a rapid rise in lower stratospheric temperatures, terminating conditions favorable to chemical ozone loss. We show that although temperatures rose precipitously during the vortex split SSW in early Jan 2013, because the offspring vortices each remained isolated and in regions that received sunlight, chemical ozone loss continued for over 1 month after the SSW. Dec/Jan Arctic ozone loss was larger than any previously observed during that period.
I. Engel, B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J.-U. Grooß, M. C. Pitts, and T. Peter
Atmos. Chem. Phys., 14, 3231–3246, https://doi.org/10.5194/acp-14-3231-2014, https://doi.org/10.5194/acp-14-3231-2014, 2014
J.-U. Grooß, I. Engel, S. Borrmann, W. Frey, G. Günther, C. R. Hoyle, R. Kivi, B. P. Luo, S. Molleker, T. Peter, M. C. Pitts, H. Schlager, G. Stiller, H. Vömel, K. A. Walker, and R. Müller
Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014, https://doi.org/10.5194/acp-14-1055-2014, 2014
S. M. Khaykin, I. Engel, H. Vömel, I. M. Formanyuk, R. Kivi, L. I. Korshunov, M. Krämer, A. D. Lykov, S. Meier, T. Naebert, M. C. Pitts, M. L. Santee, N. Spelten, F. G. Wienhold, V. A. Yushkov, and T. Peter
Atmos. Chem. Phys., 13, 11503–11517, https://doi.org/10.5194/acp-13-11503-2013, https://doi.org/10.5194/acp-13-11503-2013, 2013
I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, C. R. Hoyle, J.-U. Grooß, A. Dörnbrack, and T. Peter
Atmos. Chem. Phys., 13, 10769–10785, https://doi.org/10.5194/acp-13-10769-2013, https://doi.org/10.5194/acp-13-10769-2013, 2013
C. R. Hoyle, I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, J.-U. Grooß, and T. Peter
Atmos. Chem. Phys., 13, 9577–9595, https://doi.org/10.5194/acp-13-9577-2013, https://doi.org/10.5194/acp-13-9577-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
M. C. Pitts, L. R. Poole, A. Lambert, and L. W. Thomason
Atmos. Chem. Phys., 13, 2975–2988, https://doi.org/10.5194/acp-13-2975-2013, https://doi.org/10.5194/acp-13-2975-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
MIPAS observations of volcanic sulfate aerosol and sulfur dioxide in the stratosphere
Comparison of ozone profiles and influences from the tertiary ozone maximum in the night-to-day ratio above Switzerland
The natural oscillations in stratospheric ozone observed by the GROMOS microwave radiometer at the NDACC station Bern
Polar stratospheric cloud evolution and chlorine activation measured by CALIPSO and MLS, and modeled by ATLAS
Annika Günther, Michael Höpfner, Björn-Martin Sinnhuber, Sabine Griessbach, Terry Deshler, Thomas von Clarmann, and Gabriele Stiller
Atmos. Chem. Phys., 18, 1217–1239, https://doi.org/10.5194/acp-18-1217-2018, https://doi.org/10.5194/acp-18-1217-2018, 2018
Short summary
Short summary
Satellite-borne data of sulfur dioxide and a new data set of sulfate aerosol volume densities, as retrieved from MIPAS measurements, are studied in the upper-troposphere–lower-stratosphere region. General patterns of enhanced aerosol are in agreement with SO2. Via chemical transport model simulations for two volcanic eruptions in the Northern Hemisphere midlatitudes, we show that the volcanic enhancements in MIPAS SO2 and sulfate aerosol are consistent in terms of mass and transport patterns.
Lorena Moreira, Klemens Hocke, and Niklaus Kämpfer
Atmos. Chem. Phys., 17, 10259–10268, https://doi.org/10.5194/acp-17-10259-2017, https://doi.org/10.5194/acp-17-10259-2017, 2017
Short summary
Short summary
GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has provided ozone profiles for the Network for the Detection of Atmospheric Composition Change since 1994. A new retrieval version for ozone profiles aims to improve the altitude range of profiles. We performed a comparison between coincident profiles of GROMOS and Aura MLS, resulting in agreement within 2% in
the mid- and upper stratosphere from 2009 to 2016. We also observed extensions of the tertiary ozone maximum at midlatitudes.
Lorena Moreira, Klemens Hocke, Francisco Navas-Guzmán, Ellen Eckert, Thomas von Clarmann, and Niklaus Kämpfer
Atmos. Chem. Phys., 16, 10455–10467, https://doi.org/10.5194/acp-16-10455-2016, https://doi.org/10.5194/acp-16-10455-2016, 2016
Short summary
Short summary
The GROMOS radiometer in Bern has been part of the NDACC since 1994. Our time series of stratospheric ozone profiles allow the assessment of natural oscillations, which are essential for the evaluation of detected stratospheric ozone trends. Among our new findings are the link between the upper stratospheric O3-SAO and the polar stratopause warmings in winter. We have also detected a strong peak amplitude of 5 % related to the solar activity cycle and the ENSO effect in ozone at midlatitudes.
Hideaki Nakajima, Ingo Wohltmann, Tobias Wegner, Masanori Takeda, Michael C. Pitts, Lamont R. Poole, Ralph Lehmann, Michelle L. Santee, and Markus Rex
Atmos. Chem. Phys., 16, 3311–3325, https://doi.org/10.5194/acp-16-3311-2016, https://doi.org/10.5194/acp-16-3311-2016, 2016
Short summary
Short summary
This paper presents the first trial of analyzing amount of chlorine activation on different PSC compositions by using match analysis on trajectories initiated from PSC locations identified by CALIPSO/CALIOP measurements. The measured minor species such as HCl and ClO by MLS are compared with ATLAS chemistry-transport model (CTM) results. PSC growth to NAT, NAT/STS mixture, and ice were identified by different temperature decrease histories on trajectories.
Cited articles
Achtert, P. and Tesche, M.: Assessing lidar-based classification schemes
for polar stratospheric clouds based on 16 years of measurements at Esrange,
Sweden, J. Geophys. Res., 119, 1386–1405, https://doi.org/10.1002/2013JD020355,
2014.
Achtert, P., Karlsson Andersson, M., Khosrawi, F., and Gumbel, J.:
On the linkage between tropospheric and Polar Stratospheric clouds in the
Arctic as observed by space–borne lidar, Atmos. Chem. Phys., 12, 3791–3798, https://doi.org/10.5194/acp-12-3791-2012, 2012.
Alexander, S. P., Klekociuk, A. R., Pitts, M. C., McDonald, A. J., and
Arevalo-Torres, A.: The effect of orographic gravity waves on Antarctic polar
stratospheric cloud occurrence and composition, J. Geophys. Res.-Atmos.,
116, D06109, https://doi.org/10.1029/2010JD015184, 2011.
Alexander, S. P., Klekociuk, A. R., McDonald, A. J., and Pitts, M. C.:
Quantifying the role of orographic gravity waves on polar stratospheric
cloud occurrence in the Antarctic and the Arctic, J. Geophys. Res.-Atmos.,
118, 11493–11507, https://doi.org/10.1002/2013JD020122, 2013.
Bosilovich, M. G., Lucchesi, R., and Suarez, M.: MERRA-2: File Specification,
GMAO Office Note No. 9 (Version 1.1), 73 p., available at:
https://gmao.gsfc.nasa.gov/GMAO_products/reanalysis_products.php (last
access: July 2018), 2016.
Butchart, N. and Remsberg, E.: The area of the stratospheric polar vortex as
a diagnostic for tracer transport on an isentropic surface, J. Atmos. Sci.,
43, 1319–1339, https://doi.org/10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2, 1986.
Cairo, F., Di Donfrancesco, G., Adriani, A., Pulvirenti, L., and Fierli, F.:
Comparison of various linear depolarization parameters measured by lidar,
Appl. Optics, 38, 4425–4432, https://doi.org/10.1364/AO.38.004425, 1999.
CALIPSO Science Team: CALIPSO/CALIOP
Level 2, Polar Stratospheric Cloud Data, version 1.00, Hampton, VA, USA,
NASA Atmospheric Science Data Center (ASDC),
https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_ PSCMask-Prov-V1-00_L2-001.00
(last access: October 2017), 2015.
Campbell, P. and Deshler, T.: Condensation nuclei measurements in the
midlatitude (1982–2012) and Antarctic (1986–2010) stratosphere between 20
and 35 km, J. Geophys. Res.-Atmos., 119, 137–152, https://doi.org/10.1002/2013JD019710,
2014.
Cariolle, D., Muller, S., Cayla, F., and McCormick, M. P.: Mountain waves,
polar stratospheric clouds, and the ozone depletion over Antarctica, J.
Geophys. Res., 94, 11233–11240, https://doi.org/10.1029/JD094iD09p11233, 1989.
Carslaw, K. S., Luo, B. P., and Peter, T.: An analytic expression for the
composition of aqueous HNO3-H2SO4 stratospheric aerosols
including gas phase removal of HNO3, Geophys. Res. Lett., 22,
1877–1880, https://doi.org/10.1029/95GL01668, 1995.
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden
warmings. Part I: Climatology and modeling benchmarks, J. Climate, 20,
449–469, https://doi.org/10.1175/JCLI3996.1, 2007.
Chu, W. P. and McCormick, M. P.: Inversion of stratospheric aerosol and
gaseous constituents from spacecraft solar extinction data in the 0.38–1.0 µm range, Appl. Optics, 18, 1404–1413, 1979.
Crutzen, P. J., Müller, R., Brühl, C., and Peter, T.: On the
potential importance of the gas phase reaction and the heterogeneous reaction in
“ozone hole” chemistry, Geophys. Res. Lett., 19, 1113–1116,
https://doi.org/10.1029/92GL01172, 1992.
Deshler, T., Larsen, N., Weissner, C., Schreiner, J., Mauersberger, K.,
Cairo, F., Adriani A., Di Donfrancesco, G., Ovarlez, J., Ovarlez, H., Blum,
U., Fricke, F., and Dörnbrack, A.: Large nitric acid particles at the
top of an Arctic stratospheric cloud, J. Geophys. Res., 108, 4517,
https://doi.org/10.1029/2003JD003479, 2003.
Di Liberto, L., Cairo, F., Fierli, F., Di Donfrancesco, G., Viterbini, M.,
Deshler, T., and Snels, M.: Observation of polar stratospheric clouds over
McMurdo (77.85∘ S, 166.67∘ E) (2006–2010), J. Geophys. Res.-Atmos., 119, 5528–5541, https://doi.org/10.1002/2013JD019892, 2014.
Drdla, K. and Müller, R.: Temperature thresholds for chlorine activation and
ozone loss in the polar stratosphere, Ann. Geophys., 30, 1055–1073, https://doi.org/10.5194/angeo-30-1055-2012, 2012.
Engel, I., Luo, B. P., Pitts, M. C., Poole, L. R., Hoyle, C. R., Grooß, J.-U.,
Dörnbrack, A., and Peter, T.: Heterogeneous formation of polar stratospheric
clouds – Part 2: Nucleation of ice on synoptic scales, Atmos. Chem. Phys., 13, 10769–10785, https://doi.org/10.5194/acp-13-10769-2013, 2013.
EOS MLS Science Team: MLS/Aura
Near-Real-Time L2 Nitric Acid (HNO3) Mixing Ratio V004, Greenbelt, MD, USA,
Goddard Earth Sciences Data and Information Services Center (GES DISC), https://disc.gsfc.nasa.gov/datacollection/ML2HNO3_NRT_004.html, last
access: October 2017a.
EOS MLS Science Team: MLS/Aura
Near-Real-Time L2 Water Vapor (H2O) Mixing Ratio V004, Greenbelt, MD, USA,
Goddard Earth Sciences Data and Information Services Center (GES DISC), https://disc.gsfc.nasa.gov/datacollection/ML2H2O_NRT_004.html, last
access October 2017b.
Fahey, D. W., Gao, R. S., Carslaw, K. S., Kettleborough, J., Popp, P. J.,
Northway, M. J., Holecek, J. C., Ciciora, S. C., McLaughlin, R. J.,
Baumgardner, D. G., Gandrud, B., Wennberg, P. O., Dhaniyala, S., McKinney,
K., Peter, T., Salawitch, R. J., Bui, T. P., Elkins, J. W., Webster, C. R.,
Atlas, E. L., Jost, H., Wilson, J. C., Herman, R. L., and Kleinbohl, A.: The
detection of large HNO3-containing particles in the winter Arctic
stratosphere, Science, 291, 1026–1031, 2001.
Fromm, M., Alfred, J., and Pitts, M.: A unified, long-term, high-latitude
stratospheric aerosol and cloud database using SAM II, SAGE II, and POAM
II/III data: Algorithm description, database definition, and climatology, J.
Geophys. Res., 108, 4366, https://doi.org/10.1029/2002JD002772, 2003.
Garnier, A., Pelon, J., Vaughan, M. A., Winker, D. M., Trepte, C. R., and Dubuisson, P.:
Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of
semi-transparent cirrus cloud optical depths over oceans, Atmos. Meas. Tech., 8, 2759–2774, https://doi.org/10.5194/amt-8-2759-2015, 2015.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gobbi, G. P.: Lidar estimation of stratospheric aerosol properties: Surface,
volume, and extinction to backscatter ratio, J. Geophys. Res., 100,
11219–11235, https://doi.org/10.1029/94JD03106, 1995.
Hanson, D. R. and Mauersberger, K.: Laboratory studies of the nitric acid
trihydrate: Implications for the south polar stratosphere, Geophys. Res.
Lett., 15, 855–858, https://doi.org/10.1029/GL015i008p00855, 1988.
Heintzenberg, J.: Properties of the Log-Normal Particle Size Distribution,
Aerosol Sci. Technol., 21, 46–48, https://doi.org/10.1080/02786829408959695,
1994.
Highwood, E. J., Hoskins, B. J., and Berrisford, P.: Properties of the arctic
tropopause, Q. J. Roy. Meteorol. Soc., 126, 1515–1532,
https://doi.org/10.1002/qj.49712656515, 2000.
Hoffmann, L., Hertzog, A., Rößler, T., Stein, O., and Wu, X.: Intercomparison
of meteorological analyses and trajectories in the Antarctic lower stratosphere with
Concordiasi superpressure balloon observations, Atmos. Chem. Phys., 17, 8045–8061, https://doi.org/10.5194/acp-17-8045-2017, 2017a.
Hoffmann, L., Spang, R., Orr, A., Alexander, M. J., Holt, L. A., and Stein, O.:
A decadal satellite record of gravity wave activity in the lower stratosphere
to study polar stratospheric cloud formation, Atmos. Chem. Phys., 17, 2901–2920, https://doi.org/10.5194/acp-17-2901-2017, 2017b.
Höpfner, M., Larsen, N., Spang, R., Luo, B. P., Ma, J., Svendsen, S. H.,
Eckermann, S. D., Knudsen, B., Massoli, P., Cairo, F., Stiller, G., v. Clarmann, T.,
and Fischer, H.: MIPAS detects Antarctic stratospheric belt of NAT PSCs
caused by mountain waves, Atmos. Chem. Phys., 6, 1221–1230, https://doi.org/10.5194/acp-6-1221-2006, 2006.
Höpfner, M., Pitts, M. C., Poole, L. R.: Comparison between CALIPSO and
MIPAS observations of polar stratospheric clouds, J. Geophys. Res., 114,
D00H05, https://doi.org/10.1029/2009JD012114, 2009.
Höpfner, M., Deshler, T., Pitts, M., Poole, L., Spang, R., Stiller, G.,
and von Clarmann, T.: The MIPAS/Envisat climatology (2002–2012) of polar
stratospheric cloud (PSC) volume density profiles, Atmos. Meas. Tech.
Discuss., https://doi.org/10.5194/amt-2018-163, in review, 2018.
Hostetler, C. A., Liu, Z., Reagan, J., Vaughan, M., Winker, D., Osborn, M.,
Hunt, W. H., Powell, K. A., and Trepte, C.: CALIOP Algorithm Theoretical
Basis Document- Part 1: Calibration and Level 1 Data Products, PC-SCI-201,
available at:
http://www-calipso.larc.nasa.gov/resources/project_documentation.php
(last access: July 2018), NASA Langley Research Center, Hampton, VA, 2006.
Hunt, W. H, Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., and
Weimer, C.: CALIPSO Lidar Description and Performance Assessment, J. Atmos.
Ocean. Tech., 26, 1214–1228, https://doi.org/10.1175/2009JTECHA1223.1, 2009.
Kar, J., Vaughan, M. A., Lee, K.-P., Tackett, J. L., Avery, M. A., Garnier,
A., Getzewich, B. J., Hunt, W. H., Josset, D., Liu, Z., Lucker, P. L.,
Magill, B., Omar, A. H., Pelon, J., Rogers, R. R., Toth, T. D., Trepte, C.
R., Vernier, J.-P., Winker, D. M., and Young, S. A.: CALIPSO lidar
calibration at 532 nm: version 4 nighttime algorithm, Atmos. Meas. Tech.,
11, 1459–1479, https://doi.org/10.5194/amt-11-1459-2018, 2018.
Kohma, M. and Sato, K.: Simultaneous occurrence of polar stratospheric clouds and
upper-tropospheric clouds caused by blocking anticyclones in the Southern
Hemisphere, Atmos. Chem. Phys., 13, 3849–3864, https://doi.org/10.5194/acp-13-3849-2013, 2013.
Lambert, A. and Santee, M. L.: Accuracy and precision of polar lower stratospheric
temperatures from reanalyses evaluated from A-Train CALIOP and MLS,
COSMIC GPS RO, and the equilibrium thermodynamics of supercooled ternary
solutions and ice clouds, Atmos. Chem. Phys., 18, 1945–1975, https://doi.org/10.5194/acp-18-1945-2018, 2018.
Lambert, A., Read, W. G., Livesey, N. J., Santee, M. L., Manney, G. L.,
Froidevaux, L., Wu, D. L., Schwartz, M. J., Pumphrey, H. C., Jimenez, C.,
Nedoluha, G. E., Cofield, R. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J.,
Fuller, R. A., Jarnot, R. F., Knosp, B. W., Pickett, H. M., Perun, V. S.,
Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A., Waters, J. W.,
Jucks, K. W., Toon, G. C., Stachnik, R. A., Bernath, P. F., Boone, C. D.,
Walker, K. A., Urban, J., Murtagh, D., Elkins, J. W., and Atlas, E.:
Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor
and nitrous oxide measurements, J. Geophys. Res., 112, D24S36,
https://doi.org/10.1029/2007JD008724, 2007.
Lambert, A., Santee, M. L., Wu, D. L., and Chae, J. H.: A-train CALIOP and MLS
observations of early winter Antarctic polar stratospheric clouds and nitric
acid in 2008, Atmos. Chem. Phys., 12, 2899–2931, https://doi.org/10.5194/acp-12-2899-2012, 2012.
Lambert, A., Santee, M. L., and Livesey, N. J.: Interannual variations of early winter
Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP
and MLS, Atmos. Chem. Phys., 16, 15219–15246, https://doi.org/10.5194/acp-16-15219-2016, 2016.
Liu, Z., Hunt, W., Vaughan, M., Hostetler, C., McGill, M., Powell, K.,
Winker, D., and Hu, Y.: Estimating random errors due to shot noise in
backscatter lidar observations, Appl. Optics, 45, 4437–4447,
https://doi.org/10.1364/AO.45.004437, 2006.
Livesey, N. J., Snyder, W. V., Read, W. G., and Wagner, P. A.: Retrieval
algorithms for the EOS Microwave Limb Sounder (MLS), IEEE T. Geosci.
Remote, 44, 1144–1155, 2006.
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A.,
Manney, G. L., Valle, L. F. M., Pumphrey, H. C., Santee, M. L., Schwartz, M.
J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., and Martinez, E.:
Version 4.2x Level 2 data quality and description document, Tech. Rep. JPL
D-33509 Rev. C, Jet Propulsion Laboratory, available at:
http://mls.jpl.nasa.gov (last access: December 2017), 2017.
Lowe, D. and MacKenzie, A. R.: Polar stratospheric cloud microphysics and
chemistry, J. Atmos. Sol.-Terr. Phy., 70, 13–40,
https://doi.org/10.1016/j.jastp.2007.09.011, 2008.
Manney, G. L., Michelsen, H. A., Santee, M. L., Gunson, M. R., Irion, F. W.,
Roche, A. E., and Livesey, N. J.: Polar vortex dynamics during spring and
fall diagnosed using trace gas observations from the Atmospheric Trace
Molecule Spectroscopy instrument, J. Geophys. Res., 104, 18841–18866,
https://doi.org/10.1029/1999JD900317, 1999.
Manney, G. L., Daffer, W. H., Zawodny, J. M., Bernath, P. F., Hoppel, K. W.,
Walker, K. A., Knosp, B. W., Boone, C., Remsberg, E. E., Santee, M. L.,
Harvey, V. L., Pawson, S., Jackson, D. R., Deaver, L., McElroy, C. T.,
McLinden, C. A., Drummond, J. R., Pumphrey, H. C., Lambert, A., Schwartz, M.
J., Froidevaux, L., McLeod, S., Takacs, L. L., Suarez, M. J., Trepte, C. R.,
Cuddy, D. C., Livesey, N. J., Harwood, R. S., and Waters, J. W.: Solar
occultation satellite data and derived meteorological products: Sampling
issues and comparisons with Aura Microwave Limb Sounder, J. Geophys. Res.,
112, D24S50, https://doi.org/10.1029/2007JD008709, 2007 (data available at: https://mls.jpl.nasa.gov/dmp/, last access: December 2017).
Manney, G. L., Hegglin, M. I., Daffer, W. H., Santee, M. L., Ray, E. A., Pawson, S.,
Schwartz, M. J., Boone, C. D., Froidevaux, L., Livesey, N. J., Read, W. G., and Walker, K. A.:
Jet characterization in the upper troposphere/lower stratosphere (UTLS):
applications to climatology and transport studies, Atmos. Chem. Phys., 11, 6115–6137, https://doi.org/10.5194/acp-11-6115-2011, 2011a
(data available at: https://mls.jpl.nasa.gov/dmp/, last access: December 2017).
Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C.,
Veefkind, P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L., Poole,
L. R., Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V., Gernandt,
H., Johnson, B., Kivi, R., Kyrö, E., Larsen, N., Levelt, P. F., Makshtas,
A., McElroy, C. T., Nakajima, H., Parrondo, M. C., Tarasick, D. W., von der
Gathen, P., and Walker, K. A.: Unprecedented Arctic ozone loss in 2011,
Nature, 478, 469–475, https://doi.org/10.1038/nature10556, 2011b.
Massoli, P., Maturilli, M., and Neuber, R.: Climatology of Arctic polar
stratospheric clouds as measured by lidar in Ny-Ålesund, Spitsbergen
(79∘ N, 12∘ E), J. Geophys. Res., 111, D09206,
https://doi.org/10.1029/2005JD005840, 2006.
McCormick, M. P., Hamill, P., Pepin, T. J., Chu, W. P., Swissler, T. J., and
McMaster, L. R.: Satellite studies of the stratospheric aerosol, B. Am.
Meteorol. Soc., 60, 1038–1046, 1979.
McCormick, M P., Steele, H. M., Hamill, P., Chu, W. P., and Swissler, T. J.:
Polar Stratospheric Cloud Sightings by SAM II, J. Atmos. Sci., 39,
1387–1397, 1982.
Mishchenko, M. I. and Travis, L. D.: Capabilities and limitations of a
current FORTRAN implementation of the T-matrix method for randomly oriented,
rotationally symmetric scatterers, J. Q. Spectrosc. Ra.,
60, 309–324, https://doi.org/10.1016/S0022-4073(98)00008-9, 1998.
Molleker, S., Borrmann, S., Schlager, H., Luo, B., Frey, W., Klingebiel, M., Weigel, R.,
Ebert, M., Mitev, V., Matthey, R., Woiwode, W., Oelhaf, H., Dörnbrack, A., Stratmann, G.,
Grooß, J.-U., Günther, G., Vogel, B., Müller, R., Krämer, M., Meyer, J.,
and Cairo, F.: Microphysical properties of synoptic-scale polar stratospheric
clouds: in situ measurements of unexpectedly large HNO3-containing
particles in the Arctic vortex, Atmos. Chem. Phys., 14, 10785–10801, https://doi.org/10.5194/acp-14-10785-2014, 2014.
Morgenstern, O., Hegglin, M. I., Rozanov, E., O'Connor, F. M., Abraham, N. L., Akiyoshi, H.,
Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Deushi, M.,
Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Jöckel, P., Josse, B.,
Kinnison, D., Lin, M., Mancini, E., Manyin, M. E., Marchand, M., Marécal, V., Michou, M.,
Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R.,
Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K.,
and Zeng, G.: Review of the global models used within phase 1 of the Chemistry–Climate
Model Initiative (CCMI), Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, 2017.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and
supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc.,
131, 1539–1565, https://doi.org/10.1256/qj.04.94, 2005.
Northway, M. J., Gao, R. S., Popp, P. J., Holecek, J. C., Fahey, D. W.,
Carslaw, K. S., Tolbert, M. A., Lait, L. R., Dhaniyala, S., Flagan, R. C.,
Wennberg, P. O., Mahoney, M. J., Herman, R. L., Toon, G. C., and Bui, T. P.: An
analysis of large HNO3-containing particles sampled in the Arctic
stratosphere during the winter of 1999 /2000, J. Geophys. Res., 107,
8289, https://doi.org/10.1029/2001JD001079, 2002.
Orr, A., Hosking, J. S., Hoffmann, L., Keeble, J., Dean, S. M., Roscoe, H. K., Abraham, N. L.,
Vosper, S., and Braesicke, P.: Inclusion of mountain-wave-induced cooling for the formation of
PSCs over the Antarctic Peninsula in a chemistry–climate model, Atmos. Chem. Phys., 15, 1071–1086, https://doi.org/10.5194/acp-15-1071-2015, 2015.
Ott, L. E., Duncan, B. N., Thompson, A. M., Diskin, G., Fasnacht, Z.,
Langford, A. O., Lin, M., Molod, A. M., Nielsen, J. E., Pusede, S. E.,
Wargan, K., Weinheimer, A. J., and Yoshida, Y.: Frequency and impact of
summertime stratospheric intrusions over Maryland during DISCOVER-AQ (2011):
New evidence from NASA's GEOS-5 simulations, J. Geophys. Res.-Atmos., 121,
3687–3706, https://doi.org/10.1002/2015JD024052, 2016.
Peter, T. and Grooß, J.-U.: Chapter 4: Polar stratospheric clouds and
sulfate aerosol particles: Microphysics, denitrification and heterogeneous
chemistry, in: Stratospheric Ozone Depletion and Climate, edited by:
Müller, R., 108–144, RSC Publishing, Cambridge, UK, 2012.
Pitts, M. C., Thomason, L. W., Poole, L. R., and Winker, D. M.: Characterization of Polar
Stratospheric Clouds with spaceborne lidar: CALIPSO and the 2006
Antarctic season, Atmos. Chem. Phys., 7, 5207–5228, https://doi.org/10.5194/acp-7-5207-2007, 2007.
Pitts, M. C., Poole, L. R., and Thomason, L. W.: CALIPSO polar stratospheric cloud observations:
second-generation detection algorithm and composition discrimination, Atmos. Chem. Phys., 9, 7577–7589, https://doi.org/10.5194/acp-9-7577-2009, 2009.
Pitts, M. C., Poole, L. R., Dörnbrack, A., and Thomason, L. W.: The 2009–2010 Arctic polar
stratospheric cloud season: a CALIPSO perspective, Atmos. Chem. Phys., 11, 2161–2177, https://doi.org/10.5194/acp-11-2161-2011, 2011.
Pitts, M. C., Poole, L. R., Lambert, A., and Thomason, L. W.: An assessment of CALIOP polar
stratospheric cloud composition classification, Atmos. Chem. Phys., 13, 2975–2988, https://doi.org/10.5194/acp-13-2975-2013, 2013.
Platt, C. M. R., Vaughan, M. A., and Austin, R. T.: Characteristics of
CALIPSO and CloudSat Backscatter at the Top Center Layers of Mesoscale
Convective Systems and Relation to Cloud Microphysics, J. Appl. Meteorol. Clim., 50, 368–378, https://doi.org/10.1175/2010JAMC2537.1, 2011.
Poole, L. R. and Pitts, M. C.: Polar stratospheric cloud climatology based
on SAM II observations from 1978–1989, J. Geophys. Res., 99, 13083,
https://doi.org/10.1029/94JD00411, 1994.
Prata, A. T., Young, S. A., Siems, S. T., and Manton, M. J.: Lidar ratios of stratospheric
volcanic ash and sulfate aerosols retrieved from CALIOP measurements, Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017, 2017.
Read, W. G., Lambert, A., Bacmeister, J., Cofield, R. E., Christensen, L.
E., Cuddy, D. T., Daffer, W. H., Drouin, B. J., Fetzer, E., Froidevaux, L.,
Fuller, R., Herman, R., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Kelly,
K., Knosp, B. W., Kovalenko, L. J., Livesey, N. J., Liu, H. C., Manney, G.
L., Pickett, H. M., Pumphrey, H. C., Rosenlof, K. H., Sabounchi, X., Santee,
M. L., Schwartz, M. J., Snyder,W. V., Stek, P. C., Su, H., Takacs, L. L.,
Thurstans, R. P., Vomel, H., Wagner, P. A., Waters, J. W., Webster, C. R.,
Weinstock, E. M., and Wu, D. L.: Aura Microwave Limb Sounder upper
tropospheric and lower stratospheric H2O and relative humidity with respect
to ice validation, J. Geophys. Res., 112, D24S35, https://doi.org/10.1029/2007JD008752,
2007.
Reichardt, J., Dörnbrack, A., Reichardt, S., Yang, P., and McGee, T. J.: Mountain wave PSC
dynamics and microphysics from ground-based lidar measurements and meteorological
modeling, Atmos. Chem. Phys., 4, 1149–1165, https://doi.org/10.5194/acp-4-1149-2004, 2004.
SAM II Science Team: SAM II Level 2
Data, Hampton, VA, USA: NASA Atmospheric Science Data Center (ASDC), https://doi.org/10.5067/NIMBUS7/SAMII/SOLAR_ASCII_L2-AV (last
access: October 2017), 1999.
Santee, M. L., Lambert, A., Read, W. G., Livesey, N. J., Cofield, R. E.,
Cuddy, D. T., Daffer, W. H., Drouin, B. J., Froidevaux, L., Fuller, R. A.,
Jarnot, R. F., Knosp, B. W., Manney, G. L., Perun, V. S., Snyder, W. V.,
Stek, P. C., Thurstans, R. P., Wagner, P. A., Waters, J. W., Muscari, G., de
Zafra, R. L., Dibb, J. E., Fahey, D.W., Popp, P. J., Marcy, T. P., Jucks, K.
W., Toon, G. C., Stachnik, R. A., Bernath, P. F., Boone, C. D., Walker, K.
A., Urban, J., and Murtagh, D.: Validation of the Aura Microwave Limb
Sounder HNO3 measurements, J. Geophys. Res., 112, D24S40,
https://doi.org/10.1029/2007JD008721, 2007.
Scarchilli, C., Adriani, A., Cairo, F., Di Donfrancesco, G., Buontempo, C.,
Snels, M., Moriconi, M. L., Deshler, T., Larsen, N., Luo, B., Mauersberger,
K., Ovarlez, J., Rosen, J., and Schreiner, J.: Determination of polar
stratospheric cloud particle refractive indices by use of in situ optical
measurements and T-matrix calculations, Appl. Optics, 44, 3302–3311,
https://doi.org/10.1364/AO.44.003302, 2005.
Schreiner, J., Voigt, C., Weisser, R., Kohlmann, A., Mauersberger, K.,
Deshler, T., Kröger, C., Rosen, J., Kjome, N., Larsen, N., Adriani, A.,
Cairo, F., Di Donfrancesco, G., Ovarlez, J., Ovarlez, H., and Dörnbrack,
A.: Chemical, microphysical, and optical properties of polar stratospheric
clouds, J. Geophys. Res., 107, 8313, https://doi.org/10.1029/2001JD000825, 2002.
Shindell, D. T.: Climate and ozone response to increased stratospheric water
vapor, Geophys. Res. Lett., 28, 1551–1554, https://doi.org/10.1029/1999GL011197, 2001.
Solomon, S.: Stratospheric ozone depletion: A review of concepts and
history, Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999RG900008, 1999.
Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J.: On the
depletion of Antarctic ozone, Nature, 321, 755–758, 1986.
Spang, R., Remedios, J. J., Kramer, L. J., Poole, L. R., Fromm, M. D.,
Müller, M., Baumgarten, G., and Konopka, P.: Polar stratospheric cloud
observations by MIPAS on ENVISAT: detection method, validation and analysis
of the northern hemisphere winter 2002/2003, Atmos. Chem. Phys., 5, 679–692,
https://doi.org/10.5194/acp-5-679-2005, 2005.
Spang, R., Hoffmann, L., Höpfner, M., Griessbach, S., Müller, R., Pitts, M. C., Orr, A. M. W.,
and Riese, M.: A multi-wavelength classification method for polar stratospheric
cloud types using infrared limb spectra, Atmos. Meas. Tech., 9, 3619–3639, https://doi.org/10.5194/amt-9-3619-2016, 2016.
Spang, R., Hoffmann, L., Müller, R., Grooß, J.-U., Tritscher, I., Höpfner, M., Pitts, M.,
Orr, A., and Riese, M.: A climatology of polar stratospheric cloud composition between
2002 and 2012 based on MIPAS/Envisat observations, Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, 2018.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang,
Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L.,
Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., and the CloudSat
Science Team: The CloudSat mission and the A-Train: A new dimension of
space-based observations of clouds and precipitation, B. Am. Meteorol.
Soc., 83, 1771–1790, https://doi.org/10.1175/BAMS-83-12-1771, 2002.
Teitelbaum, H. and Sadourny, R.: The role of planetary waves in the
formation of polar stratospheric clouds, Tellus A, 50, 302–312,
https://doi.org/10.3402/tellusa.v50i3.14528, 1998.
Teitelbaum, H., Moustaoui, M., and Fromm, M.: Exploring polar stratospheric
cloud and ozone minihole formation: The primary importance of synoptic-scale
flow perturbation, J. Geophys. Res., 106, 28173–28188,
https://doi.org/10.1029/2000JD000065, 2001.
Thomason, L. W., Earnest, N., Millán, L., Rieger, L., Bourassa, A.,
Vernier, J.-P., Manney, G., Luo, B., Arfeuille, F., and Peter, T.: A global
space-based stratospheric aerosol climatology: 1979–2016, Earth Syst. Sci.
Data, 10, 469–492, https://doi.org/10.5194/essd-10-469-2018, 2018.
Tsias, A., Wirth, M., Carslaw, K. S., Biele, J., Mehrtens, H., Reichardt,
J., Wedekind, C., Weiß, V., Renger, W., Neuber, R., von Zahn, U., Stein,
B., Santacesaria, V., Stefanutti, L., Fierli, F., Bacmeister, J., and Peter,
T.: Aircraft lidar observations of an enhanced type Ia polar stratospheric
clouds during APE-POLECAT, J. Geophys. Res., 104, 23961–23969,
https://doi.org/10.1029/1998JD100055, 1999.
Voigt, C., Larsen, N., Deshler, T., Kröger, C., Schreiner, J.,
Mauersberger, K., Luo, B., Adriani, A., Cairo, F., Di Donfrancesco, G.,
Ovarlez, J., Ovarlez, H., Dörnbrack, A., Knudsen, B., and Rosen, J.: In
situ mountain-wave polar stratospheric cloud measurements: Implications for
nitric acid trihydrate formation, J. Geophys. Res., 108, 8331,
https://doi.org/10.1029/2001JD001185, 2003.
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H.
M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D.
A., Holden, J. R., Lau, G. K. K., Livesey, N. J., Manney, G. L., Pumphrey,
H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S.,
Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A.,
Chandra, K. M., Chavez, M. C., Chen, G. S., Chudasama, B. V., Dodge, R.,
Fuller, R. A., Girard, M. A., Jiang, J. H., Jiang, Y. B., Knosp, B. W.,
LaBelle, R. C., Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N.
C., Pukala, D. M., Quintero, O., Scaff, D., Van Snyder, W., Tope, M. C.,
Wagner, P. A., and Walch, M. J.: The Earth Observing System Microwave Limb
Sounder (EOS MLS) on the Aura satellite, IEEE T. Geosci. Remote,
44, 1075–1092, 2006.
Waugh, D. W. and Randel, W. J.: Climatology of Arctic and Antarctic polar
vortices using elliptical diagnostics, J. Atmos. Sci., 56, 1594–1613,
https://doi.org/10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2, 1999.
Waugh, D. W., Sobel, A. H., and Polvani, L. M.: What is the polar vortex and
how does it influence weather, B. Am. Meteorol. Soc., 98, 37–44,
https://doi.org/10.1175/BAMS-D-15-00212.1, 2017.
Wegner, T., Pitts, M. C., Poole, L. R., Tritscher, I., Grooß, J.-U., and Nakajima, H.:
Vortex-wide chlorine activation by a mesoscale PSC event in the Arctic winter of
2009/10, Atmos. Chem. Phys., 16, 4569–4577, https://doi.org/10.5194/acp-16-4569-2016, 2016.
Weigel, R., Volk, C. M., Kandler, K., Hösen, E., Günther, G., Vogel, B., Grooß, J.-U.,
Khaykin, S., Belyaev, G. V., and Borrmann, S.: Enhancements of the refractory submicron
aerosol fraction in the Arctic polar vortex: feature or exception?, Atmos. Chem. Phys., 14, 12319–12342, https://doi.org/10.5194/acp-14-12319-2014, 2014.
Wespes, C., Hurtmans, D., Clerbaux, C., Santee, M. L., Martin, R. V., and Coheur, P. F.:
Global distributions of nitric acid from IASI/MetOP measurements, Atmos. Chem. Phys., 9, 7949–7962, https://doi.org/10.5194/acp-9-7949-2009, 2009.
Wilson, J. C., Stolzenburg, M. R., Clark, W. E., Loewenstein, M., Ferry, G.
V., and Chan, K. R.: Measurements of Condensation Nuclei in the Airborne
Arctic Stratospheric Expedition: Observations of Particle Production in the
Polar Vortex, Geophys. Res. Lett., 17, 361–364, 1990.
Winker, D.: CALIPSO LID L1 Standard HDF File
– Version 4.10, NASA Langley Research Center Atmospheric Science Data Center
DAAC, https://doi.org/10.5067/caliop/calipso/lid_l1-standard-v4-10 (last access: December 2017), 2016.
Winker, D. M., McGill, M., and Hunt, W. H.: Initial performance assessment
of CALIOP, Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135, 2007.
Winker, D. M., Vaughan, M. A., Omar, A. H., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP Data
Processing Algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
WMO (World Meteorological Organization): Antarctic Ozone Bulletin, No.
8/2006, Geneva, Switzerland, July 2007.
WMO (World Meteorological Organization): Scientific Assessment of Ozone
Depletion: 2014, Global Ozone Research and Monitoring Project-Report No. 55,
Geneva, Switzerland, 2015.
Young, S. A. and Vaughan, M. A.: The Retrieval of Profiles of Particulate
Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite
Observations (CALIPSO) Data: Algorithm Description, J. Atmos. Ocean.
Tech., 26, 1105–1119, https://doi.org/10.1175/2008JTECHA1221.1, 2009.
Zhang, J., Tian, W., Chipperfield, M., Xie, F., and Huang, J.: Persistent
shift of the Arctic polar vortex towards the Eurasian continent in recent
decades, Nat. Clim. Change, 6, 1094–1099, https://doi.org/10.1038/nclimate3136, 2016.
Zhu, Y., Toon, O. B., Pitts, M. C., Lambert, A., Bardeen, C., and Kinnison,
D. E.: Comparing simulated PSC optical properties with CALIPSO observations
during the 2010 Antarctic Winter, J. Geophys. Res.-Atmos., 122, 1175–1202,
https://doi.org/10.1002/2016JD025191, 2017.
Short summary
This paper first describes the new version 2 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) polar stratospheric cloud (PSC) detection and composition classification algorithm. We then present a state-of-the-art PSC reference data record and climatology constructed by applying the v2 algorithm to the over 11 years CALIOP spaceborne lidar dataset spanning 2006–2017. This work is part of a larger effort being performed under the auspices of the SPARC Polar Stratospheric Cloud Initiative.
This paper first describes the new version 2 Cloud-Aerosol Lidar with Orthogonal Polarization...
Altmetrics
Final-revised paper
Preprint