Articles | Volume 18, issue 14
https://doi.org/10.5194/acp-18-10123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-18-10123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts
Gehui Wang
CORRESPONDING AUTHOR
Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China
Fang Zhang
College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
Jianfei Peng
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Lian Duan
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
State Environmental Protection Key Lab of Environmental Risk Assessment and control on Chemical Processes, East China University of Science and Technology, Shanghai 200237, China
Yuemeng Ji
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
School of Environmental Science and Engineering, Institute of Environmental Health and Pollution, Control, Guangdong University of Technology, Guangzhou 510006, China
Wilmarie Marrero-Ortiz
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
Jiayuan Wang
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Jianjun Li
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Can Wu
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Cong Cao
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Yuan Wang
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
Jun Zheng
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jeremiah Secrest
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
Yixin Li
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
Yuying Wang
College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
Hong Li
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Na Li
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
Key Laboratory of Songliao Aquatic Environment, Jilin Jianzhu University, Changchun, 130118, China
Departments of Atmospheric Sciences and Chemistry, Texas A&M University, College Station, TX, 77843, USA
State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Viewed
Total article views: 7,488 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Feb 2018)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 5,101 | 2,198 | 189 | 7,488 | 154 | 254 |
- HTML: 5,101
- PDF: 2,198
- XML: 189
- Total: 7,488
- BibTeX: 154
- EndNote: 254
Total article views: 5,684 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Jul 2018)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 4,053 | 1,457 | 174 | 5,684 | 143 | 219 |
- HTML: 4,053
- PDF: 1,457
- XML: 174
- Total: 5,684
- BibTeX: 143
- EndNote: 219
Total article views: 1,804 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Feb 2018)
| HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 1,048 | 741 | 15 | 1,804 | 11 | 35 |
- HTML: 1,048
- PDF: 741
- XML: 15
- Total: 1,804
- BibTeX: 11
- EndNote: 35
Viewed (geographical distribution)
Total article views: 7,488 (including HTML, PDF, and XML)
Thereof 7,417 with geography defined
and 71 with unknown origin.
Total article views: 5,684 (including HTML, PDF, and XML)
Thereof 5,638 with geography defined
and 46 with unknown origin.
Total article views: 1,804 (including HTML, PDF, and XML)
Thereof 1,779 with geography defined
and 25 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 25 Nov 2025
Short summary
Several studies using thermodynamic models estimated pH and sulfate formation rate during pollution periods in China are highly conflicting. Here we show distinct sulfate formation for organic seed particles from that of (NH4)2SO4 seeds, when the particles are exposed to SO2, NO2, and NH3 at high RH. Our results reveal that the pH value of ambient organics-dominated aerosols is sufficiently high to promote efficient SO2 oxidation by NO2 with NH3 neutralization under polluted conditions in China.
Several studies using thermodynamic models estimated pH and sulfate formation rate during...
Altmetrics
Final-revised paper
Preprint