Articles | Volume 17, issue 15
https://doi.org/10.5194/acp-17-9291-2017
https://doi.org/10.5194/acp-17-9291-2017
Research article
 | 
04 Aug 2017
Research article |  | 04 Aug 2017

Horizontal and vertical structure of reactive bromine events probed by bromine monoxide MAX-DOAS

William R. Simpson, Peter K. Peterson, Udo Frieß, Holger Sihler, Johannes Lampel, Ulrich Platt, Chris Moore, Kerri Pratt, Paul Shepson, John Halfacre, and Son V. Nghiem

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by William R. Simpson on behalf of the Authors (15 Jun 2017)  Author's response    Manuscript
ED: Publish as is (28 Jun 2017) by Anna Jones
Download
Short summary
We investigated Arctic atmospheric bromine chemistry during March–April 2012 to improve understanding of the role of sea ice and cracks in sea ice (leads) in this phenomenon. We find that leads vertically redistribute reactive bromine but that open/re-freezing leads are not major direct reactive halogen sources. Surface ozone depletion affects the vertical distribution and amount of reactive halogens, and aerosol particles are necessary but not sufficient to maintain reactive bromine aloft.
Altmetrics
Final-revised paper
Preprint