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Abstract. Heterogeneous photochemistry converts bromide
(Br™) to reactive bromine species (Br atoms and bromine
monoxide, BrO) that dominate Arctic springtime chemistry.
This phenomenon has many impacts such as boundary-
layer ozone depletion, mercury oxidation and deposition,
and modification of the fate of hydrocarbon species. To
study environmental controls on reactive bromine events,
the BRomine, Ozone, and Mercury EXperiment (BROMEX)
was carried out from early March to mid-April 2012 near
Barrow (Utqgiagvik), Alaska. We measured horizontal and
vertical gradients in BrO with multiple-axis differential opti-
cal absorption spectroscopy (MAX-DOAS) instrumentation
at three sites, two mobile and one fixed. During the cam-
paign, a large crack in the sea ice (an open lead) formed
pushing one instrument package ~250km downwind from
Barrow (Utqiagvik). Convection associated with the open
lead converted the BrO vertical structure from a surface-
based event to a lofted event downwind of the lead influ-
ence. The column abundance of BrO downwind of the re-
freezing lead was comparable to upwind amounts, indicat-
ing direct reactions on frost flowers or open seawater was
not a major reactive bromine source. When these three sites
were separated by ~ 30 km length scales of unbroken sea ice,
the BrO amount and vertical distributions were highly corre-

lated for most of the time, indicating the horizontal length
scales of BrO events were typically larger than ~30km
in the absence of sea ice features. Although BrO amount
and vertical distribution were similar between sites most
of the time, rapid changes in BrO with edges significantly
smaller than this ~30km length scale episodically trans-
ported between the sites, indicating BrO events were large
but with sharp edge contrasts. BrO was often found in shal-
low layers that recycled reactive bromine via heterogeneous
reactions on snowpack. Episodically, these surface-based
events propagated aloft when aerosol extinction was higher
>0.1 km™! ); however, the presence of aerosol particles aloft
was not sufficient to produce BrO aloft. Highly depleted
ozone (< 1 nmol mol~!) repartitioned reactive bromine away
from BrO and drove BrO events aloft in cases. This work
demonstrates the interplay between atmospheric mixing and
heterogeneous chemistry that affects the vertical structure
and horizontal extent of reactive bromine events.
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1 Introduction

During Arctic spring, photochemical reactions on snow, ice,
and aerosol particle surfaces convert, and may also recycle,
halide anions that originate from sea salts to potent halo-
gen oxidizers that cause ozone depletion events (Barrie et al.,
1988; Simpson et al., 2007b), oxidize hydrocarbons (Jobson
et al., 1994; Gilman et al., 2010; Hornbrook et al., 2016), and
oxidize mercury (Schroeder et al., 1998; Steffen et al., 2008),
leading to enhanced deposition of pollutants to the Arctic.
This chemistry depends upon the presence of sea ice, which
is rapidly changing (Nghiem et al., 2007, 2013; Stroeve et al.,
2012), but understanding of environmental controls (Abbatt
et al., 2012; Simpson et al., 2015) on this chemical process
is very limited.

Satellite remote sensing has detected enhanced bromine
monoxide (BrO) during Arctic spring (Richter et al., 1998;
Wagner and Platt, 1998), but satellite-detected hot spots were
sometimes not observed by in situ aircraft studies (Jacob et
al., 2010; Salawitch et al., 2010). Satellite-observed BrO was
correlated with high winds (Jones et al., 2009; Choi et al.,
2012) and potential frost flowers (Kaleschke et al., 2004),
while ground-based studies found little relationship between
BrO and these proxy measurements (Simpson et al., 2007a;
Halfacre et al., 2014; Peterson et al., 2016). To investigate
these aspects of springtime reactive bromine chemistry, we
carried out the BRomine, Ozone, and Mercury EXperiment
(BROMEX) (Nghiem et al., 2013) near Barrow (Utqgiagvik),
Alaska, in spring 2012. This study provided an unprece-
dented opportunity to investigate the relationship between
sea ice and atmospheric chemical processes.

Past work has demonstrated that BrO is related to ozone
abundance (Simpson et al., 2007a; Helmig et al., 2012; Pe-
terson et al., 2015), snowpack composition and pH (Simp-
son et al., 2005; Grannas et al., 2007; Krnavek et al., 2012;
Pratt et al., 2013), aerosol particles (Frief3 et al., 2011), and
atmospheric stability (Peterson et al., 2015). Also during
BROMEX, Moore et al. (2014) demonstrated that sea ice
leads caused vertical mixing that brought ozone and mercury
down from aloft. Peterson et al. (2015) expanded the idea
that vertical mixing was important by showing that BrO ver-
tical profiles were affected by atmospheric stability, finding
that temperature inversions were correlated to shallow BrO
layers. Pratt et al. (2013) showed that halogen activation was
efficient in snowpack if that snow was acidic and had en-
riched Br~ /CI™ ratios. Frief} et al. (2011) showed that BrO
was more likely to be elevated in cases where aerosol par-
ticles were present (as indicated by aerosol extinction mea-
surements) and suggested that aerosol production from blow-
ing snow (Yang et al., 2010) may have been responsible.

A particular aspect needing consideration for BrO obser-
vations is BrOy (BrO, =BrO + Br) repartitioning that oc-
curs at low ozone mixing ratios (MRs). The two fastest reac-
tions for the BrO, family are BrO photolysis (Reaction R1)
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and reaction of Br with ozone (Reaction R2):

BrO+hv — Br+0 (R1)
Br+ 03 — BrO+ Os. (R2)

These two reactions interconvert BrO, family members but
do not change BrO, abundance. When ozone is depleted to
levels ~ 1-2 nmol mol !, and for near-noon photolysis con-
ditions, these reactions are of roughly equal rates. There-
fore, when ozone goes below a few nanomoles per mole
(nmol mol~ 1), reactive bromine (BrO,) may be present, but
not all of that BrO, is spectroscopically visible as BrO. BrO,
is instead present as Br atoms, which rapidly oxidize mercury
(Holmes et al., 2006, 2009; Stephens et al., 2012; Moore et
al., 2014), affecting the fate of this pollutant. This low-ozone-
induced BrO, repartitioning has been observed as decreased
surface BrO during very low surface ozone periods in multi-
ple field studies (Simpson et al., 2007a; Helmig et al., 2012;
Peterson et al., 2015) and is a common feature of chemical
modeling studies (Sander et al., 1997; Evans, 2003; Thomas
et al., 2011; Toyota et al., 2014).

In the BROMEX study, we used multiple-axis differential
optical absorption spectroscopy (MAX-DOAS) instruments
deployed via helicopter in an upwind—downwind array to de-
termine typical horizontal length scale and vertical structure
of BrO events. These gradient observations complement Pe-
terson et al. (2017), who used airborne DOAS to study an
episode of reactive halogen transport. Here, we use these ob-
servations to study BrO spatial structures and the effects of
sea-ice-lead-induced vertical mixing on reactive bromine.

2 Methods
2.1 MAX-DOAS spectroscopy and analysis

BrO and aerosol optical properties inferred from oxygen
collisional dimer (O3-O, or O4) absorption were measured
by MAX-DOAS spectroscopy, as described in Peterson et
al. (2015), who adapted the methods of Frie} et al. (2011);
see the Supplement for details. Three MAX-DOAS instru-
ments of design similar to that described in prior references
(Carlson et al., 2010; Peterson et al., 2016) were used. Two of
the MAX-DOAS instruments were housed on mobile solar-
powered instrument packages called “IceLanders” that were
deployed by helicopter onto sea ice near the Barrow Arctic
Research Center (BARC) building, where the third MAX-
DOAS instrument was located. Section 3 describes locations
of the sites.

All MAX-DOAS instruments followed a scan pattern
that included below-horizon viewing elevations through the
zenith (nominally —2, —1, 0, 1, 2, 3, 5, 10, 20, and 90° ele-
vation angles). Spectra were analyzed relative to the zenith
spectrum in an elevation sequence to result in differen-
tial slant column densities, dSCDs, of O4, BrO, NO,, and
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O3 as described in Peterson et al. (2015) with modifica-
tions described in the Supplement. At the negative eleva-
tion angles, the physical pathlength is shortened due to view-
ing the ground, causing a cutoff in the dSCD(O4) as com-
pared to above-horizon spectra. For elevation scans when the
near-horizon positive-elevation dSCD(0O4) was greater than
2 x 10*3 molecule? cm ™, automated software determined the
below-horizon half-cut elevation angle. Radiative transfer
modeling with SCIATRAN (version 3.2.5) (Rozanov et al.,
2005) indicated that this half-cut elevation angle was a func-
tion of instrument optical inlet height, occurring at —0.1° el-
evation for 3 m above ground level (a.g.l.) telescope height,
which was appropriate to the IceLander platform, and —0.3°
elevation for 14 ma.g.l. telescope height, which was appro-
priate for BARC building deployment. This optical measure-
ment of the horizon elevation was then used to adjust the
view elevations and resulted in shifts to the observation el-
evation of <=+£0.3° from the nominal elevation. These cor-
rected elevation angles were used in the subsequent analysis.
All data are available from the NASA Earth Exchange (NEX)
platform (https://nex.nasa.gov/nex/projects/1388/).

The dSCD measurements were inverted to vertical profiles
of BrO mixing ratio and aerosol particle light extinction us-
ing the University of Heideleberg Profile (HeiPro) optimal-
estimation (OE) modeling software. HeiPro version 1.4 was
used for retrieving aerosol optical properties, and HeiPro 1.3
was used for BrO trace gas analysis. All data were processed
as hourly averages, resulting in vertical profiles from the sur-
face to 4 km. Only positive-elevation-angle (above-horizon)
dSCD measurements were used in the OE modeling by se-
lecting observations at elevations greater than the instrumen-
tal field of view (0.7° FWHM). The aerosol grid consisted of
20 layers, each 0.2 km thick, and the BrO grid consisted of
40 layers, each 0.1 km thick.

As discussed in Peterson et al. (2015), and following the
work of Payne et al. (2009), the full grid over-represents
the true information content in the retrieved vertical profiles,
which was typically ~2-3 degrees of freedom for signal
(DOFS) for both BrO and aerosol extinction (see Fig. S1 in
the Supplement). Therefore, the BrO amounts and vertical
distributions were represented by two quantities: the lower-
tropospheric vertical column density (LT-VCD) and the frac-
tion of that LT-VCD in the lowest 200 m ( f200). We refer to
this representation of the data as “information-content-based
retrievals”. The BrO LT-VCD is nominally the integral of the
vertical profile from the surface to the top of the model but
loses sensitivity above about 2000 m. The f>00 is the par-
tial VCD from the surface to 200 m divided by the LT-VCD.
For BrO retrieval, if either the DOFS in the lowest 200 m
is <0.7 or the DOFS from 200 to 2000 m is <0.5, we do not
report the data, ensuring that only retrievals that are well con-
strained by the observations are used. For some figures, we
calculated the average BrO MR in the 0-200 m layer, repre-
sented in picomoles per mole (pmol mol~!). Aerosol extinc-
tion vertical profiles were retrieved by modeling dSCD(Oy).

www.atmos-chem-phys.net/17/9291/2017/

9293

The aerosol extinction profiles were then integrated from the
surface to 4 km to result in an aerosol optical depth (AOD,
unitless), which was typically small for much of the cam-
paign due to the predominance of clear skies. Larger AOD
values were likely to be caused by clouds. Figure S1 shows
reduction in the lofted information (DOFS for BrO in the
2002000 ma.g.l. layer) at high AOD, which is consistent
with Peterson et al. (2015).

2.2 Ozone measurements

Surface ozone mixing ratios were measured on each Ice-
Lander platform with a modified 2B Technologies Model 205
photometric ozone monitor (Halfacre et al., 2014). These
instruments had a manufacturer-specified detection limit of
ozone of 1.0nmolmol~!. The surface ozone mixing ratio
was measured in Barrow (Utqiagvik) (McClure-Begley et al.,
2014) at the NOAA Global Monitoring Division (GMD) site
(71.3230° N, 156.6114° W), 2 km east of the BARC site.

2.3 Meteorological measurements

Barrow meteorological data were measured at the NOAA
Barrow (Utgiagvik) airport (PABR) Automated Surface Ob-
serving System (ASOS) site (71.286° N, 156.766° W), which
is 5.5km SW from the BARC building. Winds were mea-
sured at 10 ma.g.1. using an ultrasonic anemometer, and tem-
perature was measured at 2ma.g.l. with an aspirated ther-
mometer. Each IceLander platform carried cup anemometers
for wind speed measurements that were recorded by data
loggers (Campbell Scientific). The IceLander winds were
recorded at approximately 2.5ma.g.l..

3 BROMEX field campaign and meteorological
situation

The BARC instrument was located at 71.325° N, 156.668° W
and was used as a point of reference for the measurements
at the IceLander sites, called IL1 and IL2. Initially, both
IceLanders were co-located with BARC for intercompari-
son purposes. On the afternoon of March 8, IL2 was de-
ployed 27 km west of BARC (to 71.2745° N, 157.295° W),
and on 9 March, IL1 was deployed 36 km east of BARC (to
71.355° N, 155.668° W). At about 13:00 AKST on 23 March,
the sea ice on which IL2 was located broke away from the
landfast ice, and IL2 entered a drift phase for the remainder
of the campaign. Figure 1 shows the locations of instrument
packages overlaid on a map of the sea ice near local solar
noon (~ 13:30 AKST) on 23 March, and the animation in the
Supplement shows the temporal evolution of sea ice and mo-
tion of the packages. IL1 was recovered from the sea ice via
snowmobile near 12:00 AKST on 27 March and was oper-
ated co-located with the BARC instrument until 31 March.
Following opening of the lead, IL2 drifted, reporting MAX-
DOAS data until it tipped over on 10 April. The locations of
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Figure 1. Panel (a) shows the locations of IL1, BARC, and IL2 instruments overlaid on the 23 March 2012 sea ice map from daily RGB
composite 250m resolution MODIS images of ice conditions using bands 7, 2, and 1 (2105-2155, 841-876 and 620-670 nm wavelengths,
respectively) from the NASA Aqua satellite. In this composite, sea ice is light blue, open water is black, and clouds are white. The red arrows
show the MAX-DOAS viewing direction, over which BrO was averaged. The wind was from the northeast (can be seen by thin “cloud
streets”, which are wind-parallel horizontal convective rolls) and was pushing the lead open and causing IL2 to break away from shore-fast
ice and drift westward. IL1 was the most upwind instrument, BARC in the middle, and IL2 downwind. Panel (b) shows the location of the
two mobile platforms (IL1 and IL2) relative to BARC building during the drift phase. See Fig. 2 for drift distance versus time.

IL2 and IL1 compared to the BARC instrument location are
shown in the lower panel of Fig. 1.

Figure 2 summarizes the meteorological conditions dur-
ing the campaign. Temperatures were cold (—15 to —35°C),
but many days showed diurnal heating due to the returning
sun of March/April. Surface wind speeds varied from calm to
12ms~! and were approximately 10ms~! at the time of ice
break-off on 23 March. When wind speeds were low, shear

Atmos. Chem. Phys., 17, 9291-9309, 2017

was evident with higher winds at 10 m a.g.1. (measured at the
Barrow airport site) but less wind speed closer to the surface
at the 2.5ma.g.l. IL sites. Two periods (28 March-2 April
and 6-8 April) of zero reported wind speed at IL2 were likely
caused by icing of the cup anemometer at that site and are
probably artifacts.

The wind direction in this period was bimodal with a pre-
dominant wind from the north-through-east sector and a sec-

www.atmos-chem-phys.net/17/9291/2017/
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Figure 2. Meteorological data from the BROMEX campaign and drift information of IL1 and IL2. Panel (a) shows Barrow (Utgiagvik)
temperature (2 ma.g.l.) measured at the NWS-AWOS site. Panel (b) shows wind speed at all three sites, but the Barrow winds were measured
at 10ma.g.l., while IL1 and IL2 were measured at 2.5 m a.g.1. Panel (c¢) shows wind direction at Barrow (Utqgiagvik, green circles) and in blue
and red lines the direction of the IL platforms from the BARC building. The wind direction was bimodal (Fig. S2); west winds are plotted
with a shaded background, and east winds without shading. Panel (d) shows the distance of the IL platforms from BARC. Both IL platforms
started at BARC and were deployed on 8 and 9 March. On 23 March, IL2’s sea ice broke away from the land, starting its drift phase; on

27 March, IL1 returned to BARC.

ondary wind peak from the west (see wind direction his-
tograms in Fig. S2). We divided the campaign into periods of
“east” wind and “west” wind by taking the sector from 160
to 340° as “west” and from 340 through 0 to 160° as “east”.
The predominant “east” wind was from the northeast (av-
erage direction: 48°; standard deviation: 29°), and the less-
frequent “west” wind was from the west (average direction
262°; standard deviation: 34°). The design of the experiment
was to have one IL platform upwind and one downwind of
BARC, and this design often worked, as evident by the wind
direction being relatively parallel to the ENE-WSW direc-
tion of the ILI-BARC-IL2 line of sites. For the majority of
the deployment phase, IL1 was upwind of BARC, and IL2
was downwind. The lowest panel of Fig. 2 shows the dis-
tance of the IL platforms from BARC. IL1 never moved sig-
nificantly, but IL2’s drift brought it ~ 250 km west, typically
downwind, from BARC. IceLander 2 MAX-DOAS observa-
tions stopped on 10 April at 17:30 AKST, when IL2 tipped

www.atmos-chem-phys.net/17/9291/2017/

33°, preventing its optical scanner from observing the hori-
zon.

For this analysis, we divided the campaign into four peri-
ods:

— intercomparison: 2—8 March, in which all instruments
were compared at BARC;

— period B1: 8-18 March, which had no open leads and
during which the array was deployed;

— period B2: 18-28 March, which covered the lead open-
ing event when IL2 drifted west;

— period B3: 28 March—10 April, during which time IL1
was returned to BARC and shut down and IL2 contin-
ued observing until tipped.

Atmos. Chem. Phys., 17, 9291-9309, 2017
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Figure 3. Intercomparison of BrO measurements between BARC, IL1, and IL2 when all instruments were co-located at BARC. Error bars
(1o) are shown on each data point and were typically around 5 x 102 molecule cm =2 for BrO LT-VCD and 3 pmol mol~! for the BrO

0-200 m mixing ratio (MR).

4 Results

4.1 Intercomparison of MAX-DOAS observations
when co-located

To assure intercomparability of the MAX-DOAS measure-
ments, all hours when the IceLander instruments were at
BARC were correlated. This selection led to 24 h of IL2-IL1
comparison and ~ 50 h of BARC-IL1 comparison. Because
IL1 was recovered, pre- and post-deployment intercompar-
ison data were determined, but IL2 was lost, so only pre-
deployment intercomparison was possible. Figure 3 shows

Atmos. Chem. Phys., 17, 9291-9309, 2017

the results of these comparisons. For the BrO 0-200 m mix-
ing ratio, we found high R? correlations between instruments
of 0.92 and 0.95, intercepts < 0.5 pmol mol~!, and slopes of
1.08 and 1.29. Typical errors (1o') for the BrO surface mixing
ratio were 2—3 pmol mol~!. For the BrO LT-VCD, R? corre-
lations were 0.76 and 0.87 with intercept statistics within 1o
of zero and slope within 20 of unity. Typical BrO LT-VCD
errors (1o) were ~ 5 x 102 molecule cm™2. These results
demonstrate good agreement between three independent in-
struments and allow us to use the instruments to determine
horizontal gradients.

www.atmos-chem-phys.net/17/9291/2017/
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to 4000 m (the AOD). Panel (d) shows the in situ surface ozone mixing ratio measured on the IL platforms and as measured by NOAA-GMD

~ 2 km northeast of the BARC building.

4.2 Gradient observations during phases B1-B3

Figures 4—6 show atmospheric chemical observations during
these three phases. During this campaign, there was a great
deal of variability of BrO by all measures. The LT-VCD var-
ied ~ 0 to ~ 8 x 1013 molecule cm~2, and the fraction in the
lowest 200m ( fop) varied the full possible range: O to 1.
Generally, period B3 had lower f>qp values, and period B2
lacked very high column events.

During period B1, BrO at the three sites followed the
same behavior. Large changes such as the precipitous drop in
BrO LT-VCD from >6 x 10'3 molecule cm™2 on 15 March
at sunrise down to near-zero values in the late morning hap-
pened at all three sites. This change appeared to be at least
partially due to low-ozone-induced BrO, repartitioning at the
surface, as discussed in Sect. 5.3. Decreasing AOD was also
observed at this time, which was probably the result of an
air mass change (e.g., frontal passage). The vertical structure
(f200) also agreed very well between sites. There were some
time shifts of up to ~ 2 h between sites, which was consistent
with the corresponding transport time, but the sites generally

www.atmos-chem-phys.net/17/9291/2017/

followed the same pattern even if they were shifted in time
by an hour or two.

Period B2 started with consistent meteorology from period
B1, although the wind increased from 18 March up until the
ice break-off event on 23 March. The BrO LT-VCD during
this period was lower than its peak earlier in the campaign,
and very shallow (e.g., f200 > 0.5) events were observed. The
association of shallow BrO layers with small column den-
sity was noted by Peterson et al. (2015) and was interpreted
as a result of poor vertical mixing preventing propagation
of surface-based BrO aloft. During the static phase (prior to
ice break-off and IL2 motion) of the study (8 to 23 March),
correlations between BrO measurements at BARC and IL2
compared to IL1 were still high despite horizontal separation
(see Fig. S3). The BARC-IL1 LT-VCD correlation R? value
was 0.84, and the IL2-IL1 correlation was R% = 0.79. The
surface BrO mixing ratios were similarly correlated, with
R? values of 0.85 and 0.81, respectively. These correlation
coefficients were similar to the co-located period, despite
separation between sites of 36 km (BARC-IL1) and 63 km
(IL2-IL1). Figure S4 shows histograms of LT-VCD differ-
ences between sites. This analysis shows that the probabil-
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Figure 5. The same as in Fig. 4 but for period B2. IL2 began drifting away from BARC on 23 March.

ity of having a difference with an absolute value less than
10"3 molecule cm™2 (20 of the BrO LT-VCD measurement
error) is 87 % for IL1-IL2 and 83 % for IL1-BARC, again in-
dicating that, at most times without open sea ice leads, strong
spatial gradients in BrO are not observed.

Figures 4 and 5 also demonstrate that ozone at the three lo-
cations was highly correlated before the lead opening event
on 23 March. Generally, before lead opening, surface ozone
mixing ratios were low (<~ 15 nmol mol~!), but when the
wind speed increased (10 and 11 March, and surrounding
the lead opening on 23 March), ozone mixing ratios in-
creased, consistent with ozone downward transport associ-
ated with wind-induced mixing (Jacobi et al., 2010). We also
observed reduced wind shear between the Barrow measure-
ments (at 10 ma.g.l.) and the IL platforms (2.5 ma.g.l.) dur-
ing the higher-wind periods, consistent with reduced stratifi-
cation of air near the surface.

Upon lead opening on the afternoon of 23 March, changes
to the vertical structure of BrO appeared. The most down-
wind site, IL2, was within a surface-based cloud formed by
the open lead, and the AOD increased significantly at that lo-
cation as compared to the other sites. This cloud precluded
BrO observations at IL2 until the next day (24 March), on
which a gradient in f>9p developed between IL1 (upwind),
BARC (middle), and IL2 (downwind), with a shallower BrO
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distribution (higher f>09 values) at the upwind site and a
more vertically mixed behavior (lower f>oo values) at IL2.
Note that the surface ozone mixing ratio was high enough
(more than a few nanomoles per mole) that repartitioning of
BrO, at the surface was not responsible for these lower f2q0
values at IL2. This gradient in BrO vertical structure per-
sisted until the morning on 26 March, when the three sites ap-
peared to be in different air masses (as indicated by different
ozone mixing ratios at the three sites, in contrast to their prior
highly correlated behavior). This change in ozone at Barrow
(BARC) on 26 March was noted by Moore et al. (2014) as a
reduction in vertical mixing due to re-freezing of previously
open leads upwind of BARC.

On the afternoon of 27 March, IL1 was recovered and
resumed operation at BARC. During this post-deployment
co-location period, IL1 and BARC agreed well (Fig. 6). On
28 March (Fig. 6), there was a different vertical profile at
IL2 than at BARC, with a surface-based event on the sea ice
at IL2 that had higher f>99 values than BARC. During the
downwind drift period (B3), the highly correlated behavior
observed prior to lead opening on 23 March was replaced
with notable discrepancy between IL2 and BARC. However,
the daily-timescale values of all quantities vary similarly be-
tween these sites despite the large distance (~ 130 to 260 km)
between sites.

www.atmos-chem-phys.net/17/9291/2017/
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Figure 6. The same as in Fig. 4 but for period B3. IL1 was recovered to BARC on 27 March, was co-located with the BARC instrument

during this period, and was shut down at the end of March.

4.3 Selected cases

Figure 7 shows altitude—time profiles of aerosol extinction
and BrO mixing ratio on the selected days of 9, 15, 16,
and 22-24 March. These cases were selected to have sim-
ilar meteorological conditions, with winds from the north-
east, moderate to low AOD (except for around the lead open-
ing event, particularly at IL2, on the afternoon of 23 March),
and cold temperatures (—25 to —35 °C). There was generally
good agreement between the three sites, in agreement with
the information-content-based analysis shown in Figs. 4-6.
These altitude—time profile presentations are informative de-
spite the fact that they over-represent the vertical informa-
tion, particularly aloft, where the averaging kernels show that
the vertical resolution is broadened significantly (Frief et al.,
2011; Peterson et al., 2015). It is likely that some subtle dif-
ferences aloft are simply due to lack of vertical resolution,
but the consistent features between sites are likely well rep-
resented in these profile plots.

4.3.1 9 March
This case shows a vertically thick surface-based aerosol

layer, with logjg(extinction) > —1 up to ~ 1 km. During this
day, surface ozone was sufficiently low (< 1 nmol mol~') af-
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ter noon to cause BrO, repartitioning at the surface, which
is evident by reduced values of f99 <0.1 (Fig. 4). The time
profile plots show that BrO was not present at the surface, but
the peak mixing ratio moved aloft. There was a moderate de-
cay in the LT-VCD on this day, but the occurrence of surface
BrO, repartitioning did not eliminate BrO aloft.

4.3.2 15 March

This day had dramatic BrO changes with nearly tempo-
rally coordinated behavior at all three sites. Figure 4 shows
that in the morning there was high BrO LT-VCD (>7 x
10'3 molecule cm_z), which declined to near-zero values
(<1 x 10" molecule cm—2) at noon and then recovered mod-
erately (~2 x 10"3 molecule cm™2). The morning vertical
distribution of BrO showed f>99 = 0.3, which decreased to
lower values, consistent with surface-based BrO, repartition-
ing at low ozone levels, and then f>og increased again to >0.5
late in the afternoon, indicating a surface-based BrO layer.
The BrO profiles (Fig. 7) show a relatively thick BrO layer
(to 1km) in the morning that decayed to zero at noon and
then built a shallow event in the afternoon. Aerosol extinc-
tion on this day was at relatively high values in the morning
but decreased to low levels (log(extinction) < —1.2), particu-
larly above the first 200 m a.g.l., in the afternoon.
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Figure 7. Altitude—time profiles of aerosol particle extinction (a) and BrO mixing ratio (b) on selected days during BROMEX in 2012. Ticks
on the time axis occur every 3 h. Black pixels indicate extinction above 1 km~!, which may be too optically thick to be reliably calculated
via the optimal-estimation analysis and probably make higher-altitude measurements at that time unreliable as well. BrO mixing ratios above
40 pmol mol~! are shown as black and are most likely artifacts of the limited vertical resolution of the optimal-estimation analysis. White
periods indicate missing data by lack of sun, instrumental problems, or low visibility (e.g., afternoon of 23 March at IL2 due to the lead

opening event).

4.3.3 16 March

This day had a shallow surface-based BrO event with f20p
values between 0.4 and 0.8. Sufficient ozone was present at
the surface to prevent repartitioning of BrO,. The aerosol
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profiles show that there was very little aerosol extinction aloft
and that there were only small amounts in the lowest few
hundred meters. Figure 7 shows some evidence of a lofted
aerosol particle layer, but that layer was decoupled from the
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surface aerosol layer and was not associated with BrO en-
hancements.

4.3.4 22 March

This case, which was the day before the lead opening event,
shows an interesting contrast to 16 March. There was again a
surface-based BrO event, with f>00 > 0.6, which was slightly
shallower than on 16 March. However, the aerosol extinc-
tion was both higher in magnitude and distributed much
more aloft on this date than on 16 March. Figure 7 demon-
strates that the aerosol layer descended throughout the day
and seemed to be overlapping the surface layer. However,
despite the presence of aerosol particles aloft, Fig. 7 shows
that BrO does not appear aloft (as it had on 9 and 15 March
in the morning), as discussed in Sect. 5.4.

4.3.5 23 March

This was the day of the lead opening event. All three sites
began with a shallow BrO event in the morning. There was
moderate aerosol extinction, mostly based at the surface but
extending aloft. At the time of the lead opening event, the
aerosol extinction at IL2 (downwind) went high, > 1 km™!,
in the lowest 400-600 ma.g.l., consistent with that instru-
ment being within the convective lead cloud. Unfortunately,
the lead cloud prevented BrO LT-VCD or fpq9 from being
observed at IL2, but observations become valid at all three
sites on the next day.

4.3.6 24 March

This case shows the next-day response of BrO to this lead
opening event. Downwind of the open and re-freezing lead,
IL2 observed a decrease in BrO mixing ratio at the surface
(Fig. 7) and a broadening of the BrO vertical profile to greater
heights. Unlike most times earlier in the campaign, BrO and
aerosol extinction (Fig. 7) show spatial gradients between the
sites, as was discussed using BrO LT-VCD and f>( earlier in
this section. The downwind IL2 site had high aerosol extinc-
tion in a thick (>400 m) surface based layer, which decayed
in the afternoon. Ozone was high (~ 30nmolmol~!) at all
sites, eliminating BrO, repartitioning as a cause for this dif-
ference.

5 Discussion

5.1 BrO measurements were highly correlated on
~ 30 km length scales in the absence of leads

During the pre-lead-opening period (before 23 March),
Figs. 4 and 5 show that measurements at the three sites cor-
relate despite physical separation between sites of ~ 30km,
and even ~ 60 km from IL2 to IL1. The correlation (Fig. S3)
and R? values of these separated measurements in this pe-
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riod are quite similar to the times when the instruments were
co-located at BARC (Fig. 3). It is evident from examination
of the time series data (Figs. 4 and 5) that some changes in
BrO occurred at one site before another, with temporal shifts
of a couple hours. This type of temporal shift would have
decreased the hourly correlation coefficient and was likely
responsible for some of the reduction of R between BrO
column densities for the deployed site locations and the co-
located sites. The high correlation of measurements sepa-
rated by length scales similar to satellite pixel dimensions
(Richter et al., 1998; Wagner and Platt, 1998; Begoin et al.,
2010; Choi et al., 2012; Sihler et al., 2012) is an important
finding that generally indicates that satellite-based BrO ob-
servations are likely to represent horizontal spatial features
effectively. Variability of BrO in the stratosphere (Theys et
al., 2009; Salawitch et al., 2010) or free troposphere (Theys
et al., 2011; Choi et al., 2012) could affect this conclusion,
but one would expect less horizontal inhomogeneity aloft be-
cause of a lack of small-scale features such as leads or to-
pography, which are only present at ground level. Although
we observe that the general behavior of BrO is high corre-
lation despite spatial separation, transport events that have
gradients significantly sharper than satellite length scales
are clearly evident in the data. For example, on 13 March,
Fig. 4 shows time-staggered changes in BrO LT-VCD and
Jf200. Peterson et al. (2017) used airborne DOAS to study the
13 March case and observed a very steep BrO gradient that
transports with the wind, clearly indicating that features on
the edges of air masses are <30km. Therefore, we interpret
the BrO distribution as being large regions of relatively con-
sistent BrO on >30km length scales with sharp contrasts at
their edges that are much smaller than satellite length scales.

5.2 Snowpack-based BrO events were common during
BROMEX

Many of the BrO events that occurred during BROMEX were
ground-based with a high fraction of the BrO LT-VCD in
the lowest 200 m (large f200). Peterson et al. (2015) showed
that shallow events are associated with stable meteorological
conditions, which predominated during much of this cam-
paign, particularly before the lead opening event. These shal-
low events are consistent with a snowpack source of reactive
bromine (Simpson et al., 2007a; Pratt et al., 2013). Reactive
bromine is relatively short lived due to termination reactions,
which often lead to HBr or HOBr bromide reservoirs (Platt
and Honninger, 2003). However, these reservoir species can
recycle to reactive halogens through heterogeneous chemical
reactions. Fan and Jacob (1992) proposed that heterogeneous
Reaction (R3) on aerosol surfaces was a critical step for recy-
cling reactive bromine and activating particle-bound bromide
(Br™) to reactive bromine after photolysis of Bry.

HOBr+H' +Br~ — Bry + H,0 (R3)
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Subsequent laboratory studies have demonstrated that Reac-
tion (R3) is efficient on saline liquid, ice, and aerosol par-
ticle surfaces (Fickert et al., 1999; Huff and Abbatt, 2000,
2002; Wachsmuth et al., 2002; Abbatt et al., 2012; Wren et
al., 2013; Roberts et al., 2014). Other mechanisms of halo-
gen activation also exist, such as the reaction of ozone with
aerosol or ice-bound bromide (Oum et al., 1998; Hunt et al.,
2004), but these processes are typically slower than photo-
chemical bromine release. Because heterogeneous chemistry
is required for reactive bromine recycling, we interpret these
surface-based events as recycling reactive bromine on snow-
pack surfaces.

As evident from the case studies on 16 and 22 March,
shallow surface-based BrO events can have different rela-
tionships to aerosol vertical structures. On 16 March, there
was little aerosol extinction aloft, implying low aerosol sur-
face area density, which would have slowed heterogeneous
recycling on lofted aerosol particles. One might interpret
the lack of aerosol particles aloft as causing the event to
be surface based. However, on 22 March, there was signif-
icantly more aerosol extinction detected aloft, but the event
remained based at the surface. Potential reasons for BrO not
being observed aloft on 22 March despite the presence of
aerosol particles could be a lack of vertical mixing due to
meteorological inversions (Peterson et al., 2015), which were
common during the campaign. Specifically, on 22 March,
the meteorological sounding balloon launched from Barrow
(Utgiagvik) at 15:00 AKST showed an inversion with d7 / dz
of +15Kkm™! in the lowest 200 ma.g.1.. An alternative hy-
pothesis for the lack of reactivity on the lofted aerosol on
this date could be that the particles had a chemical compo-
sition that was not conducive to halogen release. For exam-
ple, if the particles had not contained bromide (Br~), Reac-
tion (R3) would not have occurred. Laboratory (Fickert et al.,
1999; Huff and Abbatt, 2002; Abbatt et al., 2012; Wren et al.,
2013; Roberts et al., 2014) and field (Pratt et al., 2013) stud-
ies indicate that acidic pH is also required for Reaction (R3),
adding another potential reason. Another alternative could be
that the aerosol size distribution consists of larger particles
for which diffusion limits gas—surface reaction rates or that
these particles are long-range-transported Arctic haze parti-
cles (Quinn et al., 2002).

5.3 Low-ozone-induced BrOx repartitioning affected
BrO vertical profiles

Past considerations of reactive bromine chemistry has in-
dicated that BrO, partitioning between Br atoms and BrO
can be an important control on BrO abundance, which has
been modeled (Sander et al., 1997; Evans, 2003; Toyota et
al., 2014) and observed (Simpson et al., 2007a; Helmig et
al., 2012). The low ozone mixing ratios observed here (of-
ten < 1-2nmol mol~!) controlled surface BrO, partitioning
and reduced BrO abundance, and thus affected the verti-
cal distribution of BrO. Low BrO concentrations would also
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have reduced the formation of HOBr, which is necessary
for “bromine explosion” events (Wennberg, 1999; Lehrer et
al., 2004) that recycle BrO, via Reaction (R3). Through re-
duced heterogeneous recycling, BrO, would have decayed
over time as termination reactions (e.g., Br+ H;CO) oc-
curred. On 9 March, ozone levels began the day above this
threshold but soon decayed below the threshold, and BrO at
the surface decayed to zero (Fig. 7). This repartitioning ef-
fect reduces the f>p0 value to <0.1 (Fig. 4), and BrO exists
only aloft in the afternoon (Fig. 7). On 9 March, the reactive
bromine aloft was apparently generated at the surface and
moved aloft, where it recycled on aerosol particle surfaces.

On 15 March, low ozone values were observed, and what
was a very intense BrO event in the morning decayed to near-
zero LT-VCD at noon. At noon, the vertical structure of BrO
became lofted ( f>00 <0.1; Fig. 4), but aerosol extinction aloft
was smaller (Fig. 7; see Sect. 5.4) and BrO did not propagate
aloft after noon (Fig. 7). Interestingly, on 15 March, a shal-
low (f200>0.5) post-noon BrO column appeared (Fig. 7),
potentially enabled by decreased afternoon photolysis rates
and an increase in O3 in the late afternoon that repartitioned
BrO, back towards BrO.

BrO, repartitioning may also have been responsible for
low surface BrO levels and low f>p0 values on many of the
days during this campaign. Peterson et al. (2016) found that
this period (spring 2012) had particularly low surface ozone,
and Oltmans et al. (2012) showed that March ozone deple-
tion event (surface O3 < 10 nmol mol~!) probability has been
increasing over the 38-year period from 1972 to 2010. There-
fore, the prevalence of BrO;, repartitioning in the BROMEX
data set may not be representative of average behavior and
warrants further climatological investigation through analy-
sis of larger data sets.

5.4 Aerosol extinction aloft was necessary but not
sufficient for BrO to be present aloft

The cases presented in Sect. 4.3 and discussed above found
that shallow BrO events sometimes occurred with little
aerosol aloft (16 March) and at other times with significantly
more aerosol aloft (22 March). When BrO, repartitioning af-
fected surface BrO, sometimes the BrO event migrated aloft
in the presence of significant aerosol loading (9 March),
but sometimes BrO decayed both at the surface and aloft
(15 March). In all of these cases, BrO only propagated aloft
into layers with logjo (aerosol extinction) >~ —1, meaning
aerosol extinction coefficient (kexi) >~ 0.1km™!.

To check if this aerosol extinction coefficient thresh-
old is reasonable, we can use the observation to estimate
heterogeneous chemical rates. We encourage future pho-
tochemical modeling to answer this question more fully.
Aerosol extinction is related to aerosol surface area den-
sity by kext = Qext X SA/4, where Qe is the extinction ef-
ficiency, which maximizes for submicron particles at a value
close to 4, and SA is the surface area density. Assuming

www.atmos-chem-phys.net/17/9291/2017/



W. R. Simpson et al.: Horizontal and vertical structure of reactive bromine events 9303

maximal Qex =4 gives the minimum surface area density
(SA =~ 100 um? cm™3) that is consistent with the observed
threshold kexc =~ 0.1km~!, which appears necessary for
BrO to propagate aloft. In the absence of diffusion limita-
tions (e.g., typically for submicron particles), the rate of a
heterogeneous reaction is kpeg = 1/4cy SA, where c is the av-
erage velocity of the gas, and y is the reaction probability.
Wachsmuth et al. (2002) indicate that heterogeneous uptake
of HOBr on sea salt aerosol particles is limited by accom-
modation and has the value y = 0.6. The actual value of y
may be lower because ambient particles are likely not solely
sea salt. At 100 um? cm™> and thermal velocity of HOBr at
253K (—20°C), c =255ms™", and thus khet = 0.0038 5™,
corresponding to an ~4 min HOBr lifetime. Thompson et
al. (2015) indicate the photolysis rate J(HOBr) =0.0023 s~
for springtime Barrow (Utqiagvik) conditions, so this surface
area density results in a heterogeneous reactivity rate that
competes with HOBr photolysis. Photolysis of HOBr cycles
reactive bromine and destroys ozone but does not increase
the reactive bromine pool. On the other hand, Reaction (R3)
forms Bry, and upon Br, photolysis results in two reac-
tive bromine species from the one BrO radical that formed
HOBr (Wennberg, 1999; Platt and Honninger, 2003). Thus,
for bromine to “explode”, heterogeneous reactions must oc-
cur fast enough to compensate for reactive bromine losses
(e.g., termination reactions such as Br + H,CO). The obser-
vational threshold found in this study appears to be suffi-
ciently high to allow heterogeneous recycling of BrO, to
compete with BrO, loss. Therefore, it appears reasonable
that current understanding of bromine chemical kinetics is
in agreement with this observed aerosol optical extinction
threshold (aerosol extinction >0.1 km~1) required for BrO to
exist aloft.

Although we found that increased aerosol aloft was nec-
essary for BrO to be found aloft, there were cases in which
BrO remained ground based despite significant aerosol ex-
tinction above. For example, on 22 March, there was signif-
icant aerosol extinction aloft (Fig. 7), but BrO did not show
signs of migrating aloft (Fig. 7). The lack of BrO aloft could
be caused by hindered vertical mixing (Sect. 5.2) or by the
particles having incorrect chemical composition to recycle
reactive bromine. Therefore, we find that aerosol aloft is nec-
essary for BrO to be present aloft, but it is not sufficient
to always cause BrO to propagate vertically when enhanced
aerosol extinction is present. Peterson et al. (2017) used air-
borne DOAS to study the case on 13 March and found that
a reactive bromine plume propagated with the wind and was
maintained by heterogeneous chemistry on aerosol particles,
complementing the detailed cases explored in the present
study.
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5.5 Sea-ice-lead-associated convection affected the BrO
vertical profile

On 23 March, after the opening of the sea ice lead, and on
the following days (24 and 25 March) at the upwind IL1 site,
BrO was present in a shallow layer ( 200 >0.5) with moder-
ately enhanced (2 x 10'3 molecule cm™2) LT-VCD (Fig. 5).
However, the sites near to and downwind of the lead (BARC
and IL2) exhibited decreased f>0o values as compared to the
upwind site, as would be expected by vertical entrainment
of reactive-bromine-poor air from above the shallow bound-
ary layer and mixing of surface air aloft. Consistent with de-
creased f200, Fig. 7 shows this vertical mixing decreased the
BrO surface mixing ratio downwind of the lead at IL2. As
opposed to the clear surface mixing ratio decrease after lead
opening, the BrO LT-VCD (Fig. 5) does not show strong dif-
ferences between sites along the transport direction.

To further explore the effect of the lead opening event,
Fig. 8 shows the average and variability of BrO LT-VCD
and vertical distribution ( f>09) for 24-25 March, which were
the 2 days following the lead opening event. During these 2
days, IL2 was downwind of a large area of re-freezing sea
water, 71-106 km downwind of BARC. The typical surface
wind speed was ~5ms~! coming from 70°, nearly parallel
to the BARC-IL2 direction. The wind speed increases aloft;
averaged over the 0-600 ma.g.l. region, the Utqiagvik air-
port (PABR) radiosonde wind speeds were ~8.5ms™!, in-
dicating a 2-3 h transport time. Figure 8 (left panel) demon-
strates that the BrO column peaks at the middle (BARC) site
and not the most downwind (IL2) site. On average, the BrO
LT-VCD at IL1 (upwind) was somewhat (28 %) smaller than
BARC, and IL2 was slightly (5 %) smaller than BARC. A
paired ¢ test shows that the LT-VCD was statistically signifi-
cantly larger at both BARC and IL2 than it was at IL1 but that
the BARC and IL2 sites were statistically indistinguishable.
Figure 8 (right panel) demonstrates a clear trend in the f>p
metric of BrO vertical distribution, with a shallower surface
layer (larger faqp) at the upwind IL1 site trending towards
a more vertically mixed layer (smaller f>00) at the down-
wind IL2 site. All sites are statistically significantly different
from each other for f>00. These observations show that the
open lead’s primary influence was to alter the vertical distri-
bution of BrO, increasing its vertical extent, but the lead only
slightly affected the BrO column density on the timescale of
transport between these sites (up to about 3 h).

The presence of the open and re-freezing leads could have
had multiple effects on aerosol particles and BrO. Wind
blowing across the lead is likely to produce aerosol parti-
cles (Nilsson et al., 2001; May et al., 2016), which could be
lofted in the convective environment of the lead cloud. The
lead is also re-freezing between BARC and IL2 during this
period, and that new ice is likely covered with frost flowers,
which have been proposed as either a direct source of reac-
tive halogens (Rankin et al., 2002) or a source of sea salt
aerosol particles (Kaleschke et al., 2004) that could subse-
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quently produce/recycle reactive bromine via Reaction (3).
Figure 7 shows the lead opening event produced high ex-
tinction (> 1km™!) through ~ 600 m altitude on 23 March,
and this aerosol—cloud layer persisted into the morning of
24 March. Note that MAX-DOAS measures aerosol ex-
tinction by attenuation of O4 absorption path length, so
all submicron aerosol particles, supermicron particles, and
solid/liquid water droplets in a cloud will increase the aerosol
extinction. Interestingly, the aerosol extinction at IL2 on the
afternoon of 24 March is lower than at the other sites, poten-
tially due to enhanced scavenging by the humid lead cloud
environment. On 25 March, Fig. 5 shows that the AOD at
BARC and IL2 went below 0.2, also potentially caused by
scavenging and/or reduced wind speeds (Fig. 2). Piot and
von Glasow (2008) modeled interaction of an air mass with
an open lead and found that the presence of supercooled lig-
uid water droplets suppresses heterogeneous bromine recy-
cling, which may be relevant to the lead re-freezing event.
Examination of the MODIS sea ice images (animation in the
Supplement) shows that IL2 is not cloudy on both 24 and
25 March, but some clouds are seen between BARC and IL2.
Overall, the response to the lead opening of aerosol extinc-
tion, as measured by MAX-DOAS, was a peak in aerosol
extinction that corresponded with the highest winds espe-
cially at the most downwind site (IL2) and then lower aerosol
levels as winds slowed and the lead re-froze. Following the
passage of the lead cloud, which cleared around noon on
24 March, aerosol extinction (Fig. 7) does not appear to be
enhanced at the downwind site (IL2) as compared to the other
sites, potentially indicating that open water and/or frost flow-
ers between BARC and IL2 are not efficient aerosol particle
sources, at least at this surface wind speed (which dropped to
~4ms~ 1.

With regard to BrO observations on the 2 days follow-
ing lead opening, Fig. 8 showed that BrO LT-VCD increased

Atmos. Chem. Phys., 17, 9291-9309, 2017

28 % from IL1 to BARC but decreased 5 % from BARC to
IL2. The origin of the moderate increase from IL1 to BARC
is not clear, but Peterson et al. (2015) found that shallower
layers (as are observed at IL1 as compared to BARC) are
correlated with lower LT-VCD, so the deepening of the BrO
layer, and heterogeneous reactions on lofted aerosol parti-
cles, between IL1 and BARC could be responsible for that
moderate increase in BrO. MODIS images (see animation
in the Supplement) show that the lead between BARC and
IL2 is re-freezing in this period; given the cold temperatures
(—23 to —32°C), humidity from the open water, and pres-
ence of re-freezing sea ice, it is highly likely that the area
between BARC and IL2 contained frost flowers, which have
been suggested to be a source of reactive bromine (Rankin et
al., 2002; Kaleschke et al., 2004). However, we see a small
decrease in BrO from BARC to IL2, which argues against
frost flowers being a direct source of reactive bromine, con-
sistent with recent laboratory studies (Roscoe et al., 2011;
Yang et al., 2017).

5.6 Relationship of these findings to prior studies

These data show that vertical mixing deepens the atmo-
spheric layer containing BrO through lead-induced vertical
mixing. Peterson et al. (2015) found that more vertically
mixed BrO events are correlated with higher BrO column
amounts. McElroy et al. (1999) observed a large tropospheric
BrO column from high-altitude aircraft and associated this
column with sea-ice-lead-induced vertical mixing, consistent
with our observations. Satellite-based spectrometers detect
the total (tropospheric 4 stratospheric) BrO column density,
which can be corrected for stratospheric BrO (Theys et al.,
2011; Choi et al., 2012; Sihler et al., 2012) to give a tropo-
spheric VCD, but satellite sensors cannot determine vertical
profiles of BrO and may not observe shallow BrO events,

www.atmos-chem-phys.net/17/9291/2017/



W. R. Simpson et al.: Horizontal and vertical structure of reactive bromine events

which were common during BROMEX. Thus, surface (e.g.,
ground-based CIMS or MAX-DOAS) observations would in-
dicate differing environmental controls for halogen activa-
tion than satellites would have indicated. These types of dif-
ferences in environmental controls have been noted in the
literature, depending upon the type of sensor (satellite ver-
sus ground based) that was used to quantify halogen activa-
tion (BrO). Jones et al. (2009) and Yang et al. (2010) found
that satellite-detected BrO is associated with high winds that
would decrease atmospheric stability and thus cause verti-
cal mixing much like the lead-induced mixing in this ex-
ample and increase visibility of BrO from space. However,
there may also be differences in wind speed regime between
Antarctic (Jones et al., 2009; Yang et al., 2010; Theys et al.,
2011) and Arctic observations.

The finding that BrO is not increased downwind of frost
flowers is in agreement with measurements of their chemi-
cal composition, which has incorrect pH for reactive bromine
production (Kalnajs and Avallone, 2006; Abbatt et al., 2012;
Pratt et al., 2013). It is possible that the “potential frost flow-
ers” (PFF) metric (Kaleschke et al., 2004), which was de-
vised to diagnose regions of frost flower formation and which
involved a combination of open water and cold tempera-
tures, could have been diagnosing spatial regions where lead-
induced vertical mixing was occurring (Nghiem et al., 2012),
which are correlated with higher BrO LT-VCD (Peterson et
al., 2015). Therefore, the correlation of PFF with satellite-
observed BrO could be expected, not because frost flowers
are directly responsible for halogen activation but because
vertical mixing associated with the PFF proxy enhances the
thickness of the BrO layer.

Airborne observations of BrO were targeted during the
NASA ARCTAS field mission to locations of high satellite-
detected BrO column densities, but little in situ BrO was
found (Jacob et al., 2010). This finding is again consistent
with our observations — regions of high column BrO are ver-
tically mixed, leading to lower in situ mixing ratios of BrO,
and thus less detectable by aircraft in situ techniques. Re-
cent studies (Jones et al., 2009; Begoin et al., 2010; Toyota
et al., 2011; Choi et al., 2012) have found that mesoscale cy-
clonic storms that have high winds that destabilize the other-
wise stable Arctic atmosphere are associated with multi-day
satellite-remote-sensed BrO transport events, again in agree-
ment with the finding that vertical mixing enhances the BrO
column density (Peterson et al., 2015).

6 Conclusions

Analysis of time series of the BrO LT-VCD and fraction of
BrO in the lowest 200 m ( f9p) at Barrow (Utqgiagvik) gave
the following results. When a large sea ice lead opened and
the ocean re-froze, the vertical distribution of BrO was af-
fected, but no significant increase in BrO LT-VCD was ob-
served between BARC and IL2, which was downwind of
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the re-freezing lead, providing a counterexample to the hy-
pothesis that frost flowers growing on sea ice are a direct
source of BrO. Measurements of BrO LT-VCD and f>00
were highly correlated on ~ 30 km length scales when there
were no sources of vertical mixing (e.g., open leads) in the
intervening area. During the BROMEX period, which was
characterized by clear skies and cold temperatures that en-
hance vertical stability, shallow surface-based BrO events
were common. Repartitioning of BrO,, due to low ozone lev-
els caused low surface BrO mixing ratios; depending upon
whether reactive bromine recycling was efficient aloft, BrO
either shifted to higher altitude, becoming a lofted layer, or
decreased through the column. Aerosol extinction aloft was
necessary but not sufficient for BrO to be present aloft. An
aerosol extinction larger than 0.1 km~! appeared necessary
for maintaining BrO aloft. These detailed observations can
be further used in modeling studies that provide insights
into how chemistry and meteorology interact (Holmes et al.,
2006, 2010; Thomas et al., 2011, 2012, Toyota et al., 2011,
2014).

These observations highlight spatial features of BrO
events in the Arctic and their relationship to aerosol extinc-
tion. Vertical atmospheric structure (stability) is a critical
control on the nature of reactive bromine events, with typ-
ical “inverted” temperature profiles holding BrO close to the
snowpack (Frief et al., 2011; Peterson et al., 2015), where
halogen activation reactions occur (Pratt et al., 2013). Punc-
tuated vertical mixing events, either by sea-ice-lead-induced
convection or by high winds associated with storms, dilute
the surface mixing ratio, but these more vertically mixed
events are correlated with enhanced BrO column density.
These detailed observations resolve many past controversies
with respect to halogen activation in the Arctic. The Arctic
sea ice pack is thinning, and multi-year ice is being replaced
by seasonal first-year ice (Maslanik et al., 2011), which has
been predicted to increase the occurrence of leads and has
been predicted to have many further implications (Bhatt et
al., 2014). Moore et al. (2014) showed that ozone and mer-
cury are brought down from aloft during these lead events.
In this work, we showed that reactive bromine was brought
up from near the surface to a thicker layer by a lead-induced
mixing event. These two factors should increase the over-
lap of mercury with reactive bromine and thus the oxidation
and deposition of mercury to the Arctic. Predictions of in-
creased sea ice leads would thus be expected to increase the
amount of toxic mercury deposition and have a greater im-
pact on Arctic free-tropospheric O3.

Data availability. Data from this project are accessible at https://
nex.nasa.gov/nex/projects/1388/ (Simpson et al., 2016).

The Supplement related to this article is available online
at https://doi.org/10.5194/acp-17-9291-2017-supplement.
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