Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 17, issue 14
Atmos. Chem. Phys., 17, 8805–8824, 2017
https://doi.org/10.5194/acp-17-8805-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 8805–8824, 2017
https://doi.org/10.5194/acp-17-8805-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Jul 2017

Research article | 20 Jul 2017

Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements

Nikolaos Evangeliou et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Nikolaos Evangeliou on behalf of the Authors (16 Jun 2017)  Author's response    Manuscript
ED: Publish subject to technical corrections (22 Jun 2017) by Holger Tost
AR by Nikolaos Evangeliou on behalf of the Authors (22 Jun 2017)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
This is the first paper that attempts to assess the source term of the Chernobyl accident using not only activity concentrations but also deposition measurements. This is done by using the FLEXPART model combined with a Bayesian inversion algorithm. Our results show that the altitude of the injection during the first days of the accident might have reached up to 3 km, in contrast to what has been already reported (2.2 km maximum), in order the model to better match observations.
This is the first paper that attempts to assess the source term of the Chernobyl accident using...
Citation
Altmetrics
Final-revised paper
Preprint