Articles | Volume 17, issue 12
https://doi.org/10.5194/acp-17-7917-2017
https://doi.org/10.5194/acp-17-7917-2017
Research article
 | 
30 Jun 2017
Research article |  | 30 Jun 2017

Dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using WRF-Chem coupled with an AOD data assimilation system

Dan Chen, Zhiquan Liu, Chris Davis, and Yu Gu

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by dan Chen on behalf of the Authors (23 May 2017)
ED: Publish as is (01 Jun 2017) by Christopher Hoyle
AR by dan Chen on behalf of the Authors (04 Jun 2017)  Manuscript 
Download
Short summary
Saharan dust influences Atlantic TC genesis, but the relationship and mechanisms are not fully understood. This study investigated the dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using WRF-Chem coupled with an aerosol data assimilation system. Both statistics and a case study revealed that low-altitude (high-altitude) dust inhibits (favors) convection owing to changes in convective inhibition. Semi-direct effects were also noted.
Altmetrics
Final-revised paper
Preprint