Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 17, issue 11
Atmos. Chem. Phys., 17, 6547–6564, 2017
https://doi.org/10.5194/acp-17-6547-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The Geoengineering Model Intercomparison Project (GeoMIP):...

Atmos. Chem. Phys., 17, 6547–6564, 2017
https://doi.org/10.5194/acp-17-6547-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Jun 2017

Research article | 02 Jun 2017

Glacier evolution in high-mountain Asia under stratospheric sulfate aerosol injection geoengineering

Liyun Zhao et al.

Viewed

Total article views: 2,022 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,213 736 73 2,022 57 77
  • HTML: 1,213
  • PDF: 736
  • XML: 73
  • Total: 2,022
  • BibTeX: 57
  • EndNote: 77
Views and downloads (calculated since 30 Sep 2016)
Cumulative views and downloads (calculated since 30 Sep 2016)

Viewed (geographical distribution)

Total article views: 2,009 (including HTML, PDF, and XML) Thereof 1,983 with geography defined and 26 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

Discussed (preprint)

Latest update: 03 Dec 2020
Publications Copernicus
Download
Short summary
We find stratospheric sulfate aerosol injection geoengineering, G3, can slow shrinkage of high-mountain Asia glaciers by about 50 % by 2069 relative to losses from RCP8.5. The reduction in mean precipitation expected for solar geoengineering is less important than the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering in 2069 leads to temperature rise of 1.3 °C and corresponding increase in glacier volume loss rate.
We find stratospheric sulfate aerosol injection geoengineering, G3, can slow shrinkage of...
Citation
Altmetrics
Final-revised paper
Preprint