Articles | Volume 17, issue 10
https://doi.org/10.5194/acp-17-6439-2017
https://doi.org/10.5194/acp-17-6439-2017
Research article
 | 
30 May 2017
Research article |  | 30 May 2017

Thermodynamic and dynamic responses of the hydrological cycle to solar dimming

Jane E. Smyth, Rick D. Russotto, and Trude Storelvmo

Related authors

Dust radiative forcing in CMIP6 Earth System models: insights from the AerChemMIP piClim-2xdust experiment
Ove W. Haugvaldstad, Dirk Olivié, Trude Storelvmo, and Michael Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1030,https://doi.org/10.5194/egusphere-2025-1030, 2025
Short summary
Modelled surface climate response to effusive Icelandic volcanic eruptions: sensitivity to season and size
Tómas Zoëga, Trude Storelvmo, and Kirstin Krüger
Atmos. Chem. Phys., 25, 2989–3010, https://doi.org/10.5194/acp-25-2989-2025,https://doi.org/10.5194/acp-25-2989-2025, 2025
Short summary
Sensitivity of winter Arctic amplification in NorESM2
Lise Seland Graff, Jerry Tjiputra, Ada Gjermundsen, Andreas Born, Jens Boldingh Debernard, Heiko Goelzer, Yan-Chun He, Petra Margaretha Langebroek, Aleksi Nummelin, Dirk Olivié, Øyvind Seland, Trude Storelvmo, Mats Bentsen, Chuncheng Guo, Andrea Rosendahl, Dandan Tao, Thomas Toniazzo, Camille Li, Stephen Outten, and Michael Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-472,https://doi.org/10.5194/egusphere-2025-472, 2025
Short summary
Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model
Astrid B. Gjelsvik, Robert O. David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1617–1637, https://doi.org/10.5194/acp-25-1617-2025,https://doi.org/10.5194/acp-25-1617-2025, 2025
Short summary
Evaluation of biases in mid-to-high-latitude surface snowfall and cloud phase in ERA5 and CMIP6 using satellite observations
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, Haochi Che, and Trude Storelvmo
Atmos. Chem. Phys., 25, 1353–1383, https://doi.org/10.5194/acp-25-1353-2025,https://doi.org/10.5194/acp-25-1353-2025, 2025
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Counteracting influences of gravitational settling modulate aerosol impacts on cloud-base-lowering fog characteristics
Nathan H. Pope and Adele L. Igel
Atmos. Chem. Phys., 25, 5433–5444, https://doi.org/10.5194/acp-25-5433-2025,https://doi.org/10.5194/acp-25-5433-2025, 2025
Short summary
The critical number and size of precipitation embryos to accelerate warm rain initiation
Jung-Sub Lim, Yign Noh, Hyunho Lee, and Fabian Hoffmann
Atmos. Chem. Phys., 25, 5313–5329, https://doi.org/10.5194/acp-25-5313-2025,https://doi.org/10.5194/acp-25-5313-2025, 2025
Short summary
Impact on the stratocumulus-to-cumulus transition of the interaction of cloud microphysics and macrophysics with large-scale circulation
Je-Yun Chun, Robert Wood, Peter N. Blossey, and Sarah J. Doherty
Atmos. Chem. Phys., 25, 5251–5271, https://doi.org/10.5194/acp-25-5251-2025,https://doi.org/10.5194/acp-25-5251-2025, 2025
Short summary
Technical note: Phase space depiction of cloud condensation nuclei activation and cloud droplet diffusional growth
Wojciech W. Grabowski and Hanna Pawlowska
Atmos. Chem. Phys., 25, 5273–5285, https://doi.org/10.5194/acp-25-5273-2025,https://doi.org/10.5194/acp-25-5273-2025, 2025
Short summary
Impact of wildfire smoke on Arctic cirrus formation – Part 2: Simulation of MOSAiC 2019–2020 cases
Albert Ansmann, Cristofer Jimenez, Daniel A. Knopf, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, and Ronny Engelmann
Atmos. Chem. Phys., 25, 4867–4884, https://doi.org/10.5194/acp-25-4867-2025,https://doi.org/10.5194/acp-25-4867-2025, 2025
Short summary

Cited articles

Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270, 2011.
Bala, G., Duffy, P., and Taylor, K.: Impact of geoengineering schemes on the global hydrological cycle, PNAS, 105, 7664–7669, 2008.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546, 2006.
Byrne, M. and O'Gorman, P.: Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations, J. Climate, 29, 9045–9061, https://doi.org/10.1175/JCLI-D-16-0351.1, 2016.
Download
Short summary
Geoengineering is a controversial proposal to counteract global warming by reducing the incoming solar radiation. Solar dimming could restore preindustrial temperatures, but global rainfall patterns would be altered. We analyze the global rainfall changes in 11 climate model simulations of solar dimming to better understand the underlying processes. We conclude that tropical precipitation would be substantially altered, in part due to changes in the large-scale atmospheric circulation.
Share
Altmetrics
Final-revised paper
Preprint