Articles | Volume 17, issue 23
Atmos. Chem. Phys., 17, 14253–14273, 2017
https://doi.org/10.5194/acp-17-14253-2017
Atmos. Chem. Phys., 17, 14253–14273, 2017
https://doi.org/10.5194/acp-17-14253-2017
Research article
01 Dec 2017
Research article | 01 Dec 2017

Multifractal evaluation of simulated precipitation intensities from the COSMO NWP model

Daniel Wolfensberger et al.

Related authors

RainForest: a random forest algorithm for quantitative precipitation estimation over Switzerland
Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 14, 3169–3193, https://doi.org/10.5194/amt-14-3169-2021,https://doi.org/10.5194/amt-14-3169-2021, 2021
Short summary
From model to radar variables: a new forward polarimetric radar operator for COSMO
Daniel Wolfensberger and Alexis Berne
Atmos. Meas. Tech., 11, 3883–3916, https://doi.org/10.5194/amt-11-3883-2018,https://doi.org/10.5194/amt-11-3883-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022,https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Convective updrafts near sea-breeze fronts
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738, https://doi.org/10.5194/acp-22-7727-2022,https://doi.org/10.5194/acp-22-7727-2022, 2022
Short summary
Evaluation of modelled summertime convective storms using polarimetric radar observations
Prabhakar Shrestha, Silke Trömel, Raquel Evaristo, and Clemens Simmer
Atmos. Chem. Phys., 22, 7593–7618, https://doi.org/10.5194/acp-22-7593-2022,https://doi.org/10.5194/acp-22-7593-2022, 2022
Short summary
Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic
Annakaisa von Lerber, Mario Mech, Annette Rinke, Damao Zhang, Melanie Lauer, Ana Radovan, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022,https://doi.org/10.5194/acp-22-7287-2022, 2022
Short summary
Modeling impacts of ice-nucleating particles from marine aerosols on mixed-phase orographic clouds during 2015 ACAPEX field campaign
Yun Lin, Jiwen Fan, Pengfei Li, Lai-yung Ruby Leung, Paul J. DeMott, Lexie Goldberger, Jennifer Comstock, Ying Liu, Jong-Hoon Jeong, and Jason Tomlinson
Atmos. Chem. Phys., 22, 6749–6771, https://doi.org/10.5194/acp-22-6749-2022,https://doi.org/10.5194/acp-22-6749-2022, 2022
Short summary

Cited articles

Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011.
Bohme, T., Van Lipzig, N., Delobbe, L., and Seifert, A.: Precipitation patterns above Belgium using weather radar and COSMO model reflectivity data, in: Proceedings of the 8th International Symposium on Tropospheric Profiling, Delft, the Netherlands, available at: http://www.ch2011.ch/pdf/CH2011reportHIGH.pdf (last access: 13 August 2017), 2009.
COSMO: COSMO namelists and variables, available at: http://www.cosmo-model.org/content/tasks/operational/nmlDoc/cosmoDefault.htm?ver=3&mode=printerFriendly (last access: 8 July 2017), 2015.
Davis, C., Brown, B., and Bullock, R.: Object-based verification of precipitation forecasts. part i: methodology and application to mesoscale rain areas, Mon. Weather Rev., 134, 1772–1784, https://doi.org/10.1175/MWR3145.1, 2006.
Deidda, R.: Rainfall downscaling in a space-time multifractal framework, Water Resour. Res., 36, 1779–1794, https://doi.org/10.1029/2000WR900038, 2000.
Download
Short summary
Precipitation intensities simulated by the COSMO weather prediction model are compared to radar observations over a range of spatial and temporal scales using the universal multifractal framework. Our results highlight the strong influence of meteorological and topographical features on the multifractal characteristics of precipitation. Moreover, the influence of the subgrid parameterizations of COSMO is clearly visible by a break in the scaling properties that is absent from the radar data.
Altmetrics
Final-revised paper
Preprint