Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 17, issue 22
Atmos. Chem. Phys., 17, 14055–14073, 2017
https://doi.org/10.5194/acp-17-14055-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 14055–14073, 2017
https://doi.org/10.5194/acp-17-14055-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Nov 2017

Research article | 24 Nov 2017

Year-round record of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) – Part 2: Biogenic sulfur (sulfate and methanesulfonate) aerosol

Michel Legrand et al.

Viewed

Total article views: 1,844 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,263 506 75 1,844 34 76
  • HTML: 1,263
  • PDF: 506
  • XML: 75
  • Total: 1,844
  • BibTeX: 34
  • EndNote: 76
Views and downloads (calculated since 11 Apr 2017)
Cumulative views and downloads (calculated since 11 Apr 2017)

Viewed (geographical distribution)

Total article views: 1,854 (including HTML, PDF, and XML) Thereof 1,834 with geography defined and 20 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 23 Oct 2020
Publications Copernicus
Short summary
Levels of MSA and sulfate at inland Antarctica are documented from multiple year-round records of bulk and size-segregated aerosol samplings. A striking difference in the seasonality of sulfur aerosol composition, characterized by a MSA to nssSO4 ratio reaching a minimum in summer over the Antarctic plateau (0.05) and a maximum at the coast (up to 0.40), is clearly established. An efficient chemical destruction of MSA is suggested to take place over the Antarctic plateau in summer.
Levels of MSA and sulfate at inland Antarctica are documented from multiple year-round records...
Citation
Altmetrics
Final-revised paper
Preprint