Articles | Volume 17, issue 22
https://doi.org/10.5194/acp-17-13509-2017
https://doi.org/10.5194/acp-17-13509-2017
Research article
 | 
14 Nov 2017
Research article |  | 14 Nov 2017

Stochastic coalescence in Lagrangian cloud microphysics

Piotr Dziekan and Hanna Pawlowska

Related authors

Modeling collision–coalescence in particle microphysics: numerical convergence of mean and variance of precipitation in cloud simulations using the University of Warsaw Lagrangian Cloud Model (UWLCM) 2.1
Piotr Zmijewski, Piotr Dziekan, and Hanna Pawlowska
Geosci. Model Dev., 17, 759–780, https://doi.org/10.5194/gmd-17-759-2024,https://doi.org/10.5194/gmd-17-759-2024, 2024
Short summary
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: adaptation of a mixed Eulerian–Lagrangian numerical model for heterogeneous computing clusters
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev., 15, 4489–4501, https://doi.org/10.5194/gmd-15-4489-2022,https://doi.org/10.5194/gmd-15-4489-2022, 2022
Short summary
University of Warsaw Lagrangian Cloud Model (UWLCM) 1.0: a modern large-eddy simulation tool for warm cloud modeling with Lagrangian microphysics
Piotr Dziekan, Maciej Waruszewski, and Hanna Pawlowska
Geosci. Model Dev., 12, 2587–2606, https://doi.org/10.5194/gmd-12-2587-2019,https://doi.org/10.5194/gmd-12-2587-2019, 2019
Short summary
Lagrangian condensation microphysics with Twomey CCN activation
Wojciech W. Grabowski, Piotr Dziekan, and Hanna Pawlowska
Geosci. Model Dev., 11, 103–120, https://doi.org/10.5194/gmd-11-103-2018,https://doi.org/10.5194/gmd-11-103-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024,https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024,https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024,https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024,https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024,https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary

Cited articles

Alfonso, L.: An algorithm for the numerical solution of the multivariate master equation for stochastic coalescence, Atmos. Chem. Phys., 15, 12315–12326, https://doi.org/10.5194/acp-15-12315-2015, 2015.
Alfonso, L. and Raga, G. B.: The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution, Atmos. Chem. Phys., 17, 6895–6905, https://doi.org/10.5194/acp-17-6895-2017, 2017.
Andrejczuk, M., Reisner, J., Henson, B., Dubey, M., and Jeffery, C.: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?, J. Geophys. Res.-Atmos., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008.
Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: libcloudph+ +  1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C+ + , Geosci. Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-2015, 2015.
Bayewitz, M. H., Yerushalmi, J., Katz, S., and Shinnar, R.: The extent of correlations in a stochastic coalescence process, J. Atmos. Sci., 31, 1604–1614, 1974.
Download
Short summary
Raindrops form when small cloud droplets collide with each other. In most computer models of clouds, this process is described using the Smoluchowski equation. We compare the Smoluchowski equation with computer simulations in which each droplet within a small part of the cloud is modeled. We show, depending on the simulation setup, that the Smoluchowski equation can give overly slow or fast rain formation. This implies that many cloud models used do not correctly represent rain formation.
Altmetrics
Final-revised paper
Preprint