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Abstract. Stochasticity of the collisional growth of cloud
droplets is studied using the super-droplet method (SDM)
of Shima et al. (2009). Statistics are calculated from en-
sembles of simulations of collision–coalescence in a single
well-mixed cell. The SDM is compared with direct numer-
ical simulations and the master equation. It is argued that
SDM simulations in which one computational droplet repre-
sents one real droplet are at the same level of precision as the
master equation. Such simulations are used to study fluctu-
ations in the autoconversion time, the sol–gel transition and
the growth rate of lucky droplets, which is compared with
a theoretical prediction. The size of the coalescence cell is
found to strongly affect system behavior. In small cells, cor-
relations in droplet sizes and droplet depletion slow down
rain formation. In large cells, collisions between raindrops
are more frequent and this can also slow down rain forma-
tion. The increase in the rate of collision between raindrops
may be an artifact caused by assuming an overly large well-
mixed volume. The highest ratio of rain water to cloud wa-
ter is found in cells of intermediate sizes. Next, we use these
precise simulations to determine the validity of more approx-
imate methods: the Smoluchowski equation and the SDM
with multiplicities greater than 1. In the latter, we determine
how many computational droplets are necessary to correctly
model the expected number and the standard deviation of the
autoconversion time. The maximal size of a volume that is
turbulently well mixed with respect to coalescence is esti-
mated at Vmix= 1.5× 10−2 cm3. The Smoluchowski equa-
tion is not valid in such small volumes. It is argued that larger
volumes can be considered approximately well mixed, but
such approximation needs to be supported by a comparison
with fine-grid simulations that resolve droplet motion.

1 Introduction

Coalescence of hydrometeors is commonly modeled using
the Smoluchowski equation (Smoluchowski, 1916), often
also called the stochastic coalescence equation. It is a mean-
field equation that can be derived from the more funda-
mental stochastic description by neglecting correlations be-
tween numbers of droplets of different sizes (Gillespie, 1972;
Bayewitz et al., 1974). These correlations are especially im-
portant in small volumes and neglecting them can lead to
unphysical behavior. For example, when a single drop con-
tains the majority of water in a coalescence cell (gelation),
the Smoluchowski equation does not conserve mass for some
coalescence kernels (Leyvraz, 2003).

Another limitation of the Smoluchowski equation is that
it describes the evolution only of the expected number of
droplets of a given size. It does not contain information about
fluctuations around this number, which are suspected to be
crucial for precipitation onset (Telford, 1955; Scott, 1967;
Marcus, 1968). The rate of collisions between droplets de-
pends on their sizes. Small droplets rarely collide with each
other, because they are repelled by disturbance flow induced
by their settling. Once a droplet reaches a threshold size, it
becomes more efficient at collecting smaller droplets. The
mean time for a droplet to reach the threshold size is long,
but some lucky droplets could reach it much sooner through
a series of unlikely collisions. Then they grow quickly, re-
sulting in a quicker onset of precipitation. This effect cannot
be described using the Smoluchowski equation.

Moreover, although the Smoluchowski equation can be
written for the discrete number of droplets of a given size,
it is more often used for droplet concentrations. This adds an
additional assumption that the coalescence volume is large,
somewhat in agreement with neglecting fluctuations in the
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number of collisions and correlations in droplet numbers
(Gillespie, 1972).

A number of methods alternative to the Smoluchowski
equation exist. They are capable of addressing stochastic co-
alescence, but have some shortcomings that make their use in
large-scale cloud simulations impossible. The most accurate
one is direct numerical simulation (DNS). In DNS, trajecto-
ries of droplets are simulated explicitly and collisions occur
when they come into contact. The downside of DNS is that
it is computationally extremely demanding. Running a large
ensemble of simulations from which statistics could be ob-
tained would take a prohibitively long time. An alternative
approach is to use a master equation (Gillespie, 1972). It de-
scribes the temporal evolution of the probability of observ-
ing a given number of particles of a given size. Collisions are
allowed between all particles in some coalescence volume
and are assumed to be Markovian; i.e., they only depend on
the instantaneous state of the system and not on its history.
This can only be justified if the volume is well mixed, i.e., if
droplets are randomly redistributed within the volume after
each collision. It is worth noting that DNS does not require
such assumptions, so it reproduces correlations between po-
sitions and sizes of droplets. The master equation was analyt-
ically solved only for monodisperse initial conditions with
simple coalescence kernels (Bayewitz et al., 1974; Tanaka
and Nakazawa, 1993). A more general form of the Bayewitz
equation is given in Wang et al. (2006), but cannot be solved
for any realistic coalescence kernel. Solving the master equa-
tion numerically is extremely difficult due to a huge phase
space to be considered. Recently, Alfonso (2015) developed
a method to solve the master equation numerically, but was
only able to apply the method to a system of up to 40 droplets
(Alfonso and Raga, 2017). Alternatively, the stochastic sim-
ulation algorithm (SSA) (Gillespie, 1975; Seesselberg et al.,
1996) can be used to model a single trajectory obeying the
master equation, but obtaining large enough statistics would
require very long computations.

Several Lagrangian methods have been developed to
model cloud microphysics (Andrejczuk et al., 2008; Shima
et al., 2009; Sölch and Kärcher, 2010; Riechelmann et al.,
2012). Their common point is that they explicitly model
microphysical processes on a small population of compu-
tational particles, each representing a large number of real
particles. We will refer to these computational particles as
super-droplets (SDs). The words “droplets” and “drops” are
reserved for real hydrometeors. A thorough comparison of
coalescence algorithms from Lagrangian methods was done
by Unterstrasser et al. (2017). It led to the conclusion that the
method of Shima et al. (2009) “yields the best results and is
the only algorithm that can cope with all tested kernels”. It
was also found to be optimal in DNS tests (Li et al., 2017).
In the light of these results, we choose to use the coalescence
algorithm of Shima et al. (2009) in this work. Throughout the
paper, by the name “super-droplet method” (SDM) we refer
to this specific algorithm, and any conclusions regarding the

SDM are valid only for the Shima SDM. The Shima et al.
(2009) algorithm is not based on the Smoluchowski equa-
tion, but, similarly to the master equation, on the assump-
tion that the volume is well mixed. The algorithm introduces
some simplifications that may increase the scale of fluctu-
ations in the number of collisions, as described in Sect. 2.
These simplifications are not necessary in the limiting case
of a single computational particle representing a single real
particle, which we call “one-to-one” simulations. Then, the
Shima et al. (2009) algorithm should be equivalent to the
SSA; i.e., it should produce a single realization in agreement
with the master equation. To show that this is true, we com-
pare the Shima et al. (2009) algorithm with the master equa-
tion and the SSA in Sect. 3. We also compare it with the
more fundamental DNS approach in Sec. 4. Once the “one-
to-one” approach is shown to be at the same level of preci-
sion as the master equation, we use it to study some physical
processes that are related to the stochastic nature of coales-
cence. The way the sol–gel transition time changes with cell
size is studied in Sects. 3 and 6. We quantify how quickly
the luckiest cloud droplets become raindrops. In addition,
we use the “one-to-one” approach to validate more approxi-
mate methods. The Shima et al. (2009) algorithm with mul-
tiplicities greater than 1 is studied in Sect. 4. We determine
how many computational particles are required to obtain the
correct mean autoconversion time and correct fluctuations in
the autoconversion time. Next, in Sect. 5, we determine how
large a cell has to be for the Smoluchowski equation to cor-
rectly represent the rate of rain formation. Throughout the
paper we observe that the evolution of the droplet size spec-
trum strongly depends on the size of the coalescence cell.
The size of a well-mixed air volume is estimated in Sect. 7
and some implications for cloud simulations are discussed in
Sect. 8.

2 The super-droplet method

In this section we present how collision–coalescence is han-
dled in the super-droplet method. Further information about
the SDM can be found in Shima et al. (2009). Consider
coalescence of water droplets in a well-mixed volume V .
Other processes, like water condensation and evaporation,
are not included. Thanks to the assumption that the volume
is well mixed, all droplets within the volume can collide with
each other, independently of their positions (Gillespie, 1972).
Therefore droplet motion does not have to be explicitly mod-
eled and droplet coalescence can be calculated in a stochastic
manner, as is done in the master equation. Consider two ran-
domly selected droplets i and j . The probability that they
will collide during the time step 1t is P(ri , rj )=K(ri ,
rj )1t/V , where ri and rj are their radii and K is the coa-
lescence kernel. We use gravitational coalescence kernels, so
the effect of turbulence on coalescence is not studied.
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At the heart of the super-droplet method is the idea that
many droplets with same properties within a well-mixed vol-
ume can be represented by a single computational entity,
called the super-droplet (SD). As we are interested only in
droplet coalescence within a single cell, it is sufficient if SDs
are characterized by two parameters: radius r and multiplic-
ity ξ , which is the number of real droplets that a SD rep-
resents. Only integer multiplicities are allowed. In the algo-
rithm of Shima et al. (2009), two simplifications are made
that may affect the amplitude of fluctuations in the number
of collisions. The first simplification is that SDs collide in
an “all-or-nothing” manner. If a collision happens, each real
droplet represented by the SD with lower multiplicity col-
lides with a single droplet represented by the SD with higher
multiplicity. If the ith and j th SDs collide, their parameters
are updated to

ξ ′j = ξj , ξ
′

i = ξi − ξj

r ′j =
(
r3
i + r

3
j

)1/3
, r ′i = ri, (1)

where primes denote post-collisional values and we assume
ξj ≤ ξi . Intuitively, one would expect the “all-or-nothing”
procedure to lead to larger fluctuations than in a real sys-
tem, because the number of collision trials is artificially re-
duced. The second simplification, that we will refer to as “lin-
ear sampling”, is that instead of considering all N(N − 1)/2
collision pairs, only bN/2c non-overlapping pairs are ran-
domly selected. N is the number of SDs in the coalescence
cell and bxc stands for the largest integer equal to or smaller
than x. To keep the expected number of collisions equal to the
real one, coalescence probabilities are scaled up. The prob-
ability of coalescence of two SDs i and j that belong to the
same collision pair is PSD(ri , rj , ξi , ξj )=max(ξi , ξj ) P(ri ,
rj ) (N(N − 1)/2)/bN/2c (Shima et al., 2009). Real droplets
represented by the same SD cannot collide with each other,
because they have the same sedimentation velocities.

We will perform two types of simulations. In the “one-
to-one” simulations, all SDs have multiplicity ξ = 1. That
way the “all-or-nothing” simplification is removed.N0 super-
droplets are initialized by randomly drawing radii from the
assumed initial droplet size distribution, where N0 is the ini-
tial number of real droplets in a cell. Coalescence causes one
of the SDs to be discarded. Unlike in the original method of
Shima et al. (2009), timestep length is adapted at each time
step to ensure that none of the collision pairs has a coales-
cence probability greater than 1. This approach is similar to
the direct simulation Monte Carlo method used in diluted gas
dynamics (Bird, 1994). In Sect. 3 we show that the “one-to-
one” method is in agreement with the master equation.

The second type of simulation, in which the number of
SDs remains constant (with rare exceptions), is closer to the
ideas of Shima et al. (2009). We will refer to it as the “con-
stant SD” simulation. In this type of simulation, the number
of SDs is prescribed as NSD and SDs have different multi-
plicities. Typically, NSD is much smaller than N0. We use

a novel algorithm for initializing the radii and multiplici-
ties of SDs. The aim of this algorithm is to avoid large dif-
ferences in the initial droplet size distributions between re-
alizations. Super-droplet radii are not completely randomly
drawn from the assumed distribution as in the “one-to-one”
simulations. Instead, the assumed distribution is divided into
NSD bins and the radius of a single SD is randomly selected
within each bin. The bins have equal sizes on a logarithmic
scale. Consider an initial droplet size distribution n(ln(r)).
We employ a notation in which we omit the division of
radius by unit of length whenever the logarithm of a ra-
dius is taken; i.e., ln(r) stands for ln(r/µm). The concentra-
tion of droplets with radii in the range from r to r + dr is
n|r,r+dr = n(ln(r))dln(r). The first step of the initialization
is to find the largest and the smallest initial super-droplet ra-
dius, rmax and rmin. They are found iteratively, starting with
rmin= 10−9 m and rmax= 10−3 m. We require that they sat-
isfy the condition

n(ln(re))1lrV ≥ 1, (2)

where re is either rmax or rmin and
1lr = (ln(rmax)− ln(rmin))/NSD. In each iteration, if rmin
(rmax) does not satisfy Eq. (2), it is increased (decreased)
by 1 %. Once rmin and rmax are found, NSD super-droplets
are created. The radius of the ith SD is initialized by ran-
domly selecting ln(ri) in the range (ln(rmin)+ (i− 1)1lr ,
ln(rmin)+ i1lr ]. The initial multiplicity of the ith SD is
ξi =bn(ln(ri))1lrV + 0.5c. Please note that increasing
NSD causes 1lr to decrease and this in turn gives rela-
tively large values of rmin and relatively small values of
rmax. It means that this initialization procedure does not
represent tails of the distribution well, especially for large
NSD. It also means that the “constant SD” initialization with
NSD=N0 is not equivalent to the “one-to-one” initialization.
Since the large tail is important for coalescence, we add

b

∞∫
ln(rmax)

n(ln(r))dln(r)V + 0.5c super-droplets with ξ = 1 to

the cell. Their radii are selected by randomly drawing ln(r)
from the distribution Cn(ln(r))H(ln(r)− ln(rmax)), where
C is a normalizing constant and H(x) is the Heaviside step
function. This makes the actual number of SDs N higher
than the prescribed value NSD, typically by ca. 1 %. We
do not add SDs from the small tail of the distribution,
because very small droplets are of little importance for
rain formation. In this type of simulation, the timestep
length is constant: 1t = 1 s. It is not adapted, as it is done
in the “one-to-one” simulations, to make the simulation
computationally more efficient. Using a constant timestep
length can make the coalescence probability exceed unity.
If it does, it is assumed that a pair of SDs collides more
than once during the time step (Shima et al., 2009). Then,
the procedure for calculating post-collisional parameters
(Eq. 1) is applied γ̃ =min (γ , ξi/ξj ) times, where γ ≥ 1 is
the number of collisions between the ith and j th SD and
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ξi ≥ ξj . Such handling of multiple collisions can cause the
expected number of collisions to be lower than the real one
if γ > ξi/ξj . Another inconsistency is that, rigorously, the
probability of collision between SDs should change after
each of the γ̃ collisions. For these reasons timestep length
should be carefully selected so that multiple collisions do
not happen often. If two SDs with identical ξ collide, the
multiplicity of one of them drops to zero. Then, the SD with
ξ = 0 is used to split the SD with the largest ξ in the system
into two. This is slightly different than in the Shima et al.
(2009) algorithm, in which a SD with ξ = 0 is used to split
the other SD that came out of the collision that caused the
multiplicity to drop to zero. Super-droplets are discarded
after collision only if all other SDs have ξ = 1. We use an
implementation of the SDM from the libcloudph++ library
(Arabas et al., 2015). It is an open-source project available
at https://github.com/igfuw/libcloudphxx.

3 Comparison of the “one-to-one” SDM with the
master equation

The goal of this section is to show that the “one-to-one” SDM
is at the same level of precision as the master equation. To
this end, we calculate the average droplet size distribution
and the standard deviation of mass of the largest droplet from
an ensemble of “one-to-one” simulations. As a reference, we
use the results from Alfonso and Raga (2017), who used the
master equation approach to study the sol–gel transition. In a
system of aggregating particles, the sol–gel transition (gela-
tion) occurs when most of the total mass is located in a single
agglomerate (Leyvraz, 2003). For some forms of the coales-
cence kernel, the Smoluchowski equation is known not to
conserve mass after the transition. Alfonso and Raga (2017)
present numerical solutions of the master equation for a small
cloud volume undergoing the sol–gel transition, for which
the Smoluchowski equation is not valid. We perform simula-
tions for the same setup to test whether the “one-to-one” sim-
ulations are in agreement with the master equation approach.
Consider a 1 cm3 volume containing 20 droplets with a ra-
dius of 17 µm and 10 droplets of radius 21.4 µm. A gravita-
tional collision kernel is used with collision efficiencies from
Hall (1980). Collision efficiencies are bilinearly interpolated
in the radius ratio of radii space. Droplet terminal velocities
are calculated using the formula from Beard (1976).

Figure 1 shows the average mass distribution obtained
using the “one-to-one” simulations with and without linear
sampling of collision pairs. The average is calculated from
an ensemble of�= 104 realizations for each case. In simula-
tions without linear sampling, all N(N − 1)/2 collision pairs
are considered and a constant time step 1t = 0.1 s is used.
Both approaches give similar results, which shows that the
linear sampling technique does not affect the average number
of collisions. In addition, the “one-to-one” simulations are
compared with the master equation solved using the method
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Figure 1. Mass of droplets per size bin at t = 2500 s. Bins are 1 µm
wide. Points depict an averaged result of�= 104 “one-to-one” sim-
ulations with and without linear sampling of collision pairs. Error
bars show a 95 % confidence interval. The line depicts a numerical
solution of the master equation (see Fig. 8 in Alfonso and Raga,
2017, data courtesy of L. Alfonso).

of Alfonso and Raga (2017). Both approaches are generally
in agreement, with some differences at the large end of the
distribution. These differences may be caused by the way the
coalescence efficiency tables are interpolated. Another possi-
ble source of discrepancies is the numerical diffusion present
in the finite-differences method of Alfonso (2015). To test
whether the “one-to-one” method also gives correct fluctua-
tions in the number of collisions, the relative standard devia-
tion of mass of the largest droplet σ(mmax)/〈mmax〉 is plotted
in Fig. 2. This value is of interest, because the sol–gel transi-
tion time coincides with the time at which σ(mmax)/〈mmax〉

reaches maximum (Leyvraz, 2003; Alfonso and Raga, 2017).
In Fig. 2, “one-to-one” simulations, with and without lin-
ear sampling, are compared with the results of the master
equation approach presented in Alfonso and Raga (2017).
Please note that Alfonso and Raga (2017) obtained values
of σ(mmax)/〈mmax〉 from an ensemble of SSA simulations
rather than by solving the master equation, as was the case
in Fig. 1. As in Fig. 1, we do not observe any negative effect
of using the linear sampling technique, and the “one-to-one”
simulations compare relatively well with the SSA. Possible
sources of discrepancies are the same as in Fig. 1. Judging
from Figs. 1 and 2, we conclude that the “one-to-one” ap-
proach is in agreement with the master equation approach.
It accounts for the correlations in the number of droplets per
size bin and as such is more fundamental than the Smolu-
chowski equation approach.

The “one-to-one” SDM with linear sampling is computa-
tionally more efficient than solving the master equation di-
rectly, or using the SSA. It also puts no constraints on the
initial distribution of droplets. Therefore we can use the SDM
to predict gelation times for larger systems and more realis-
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Figure 2. Relative standard deviation of the mass of the largest
droplet in the system. Details of the SDM simulations are given in
the caption of Fig. 1. The size of the ensemble of SSA simulations
is �= 103. The SSA results are taken from Fig. 7 in Alfonso and
Raga (2017) (data courtesy of L. Alfonso).

tic initial conditions. We use an initial droplet distribution
that is exponential in mass n(m)= n0

m
exp(−m/m), where

n(m)dm is the number of droplets in the mass range (m,
m+ dm) in unit volume, n0= 142 cm−3, and m is the mass
of a droplet with radius r = 15 µm. This is the same distri-
bution as in Onishi et al. (2015). The total initial number of
droplets in the system is N0= n0V . The results of the “one-
to-one” simulations for N0 up to 105 are shown in Fig. 3. For
N0≥ 102, the relative standard deviation of the mass of the
largest droplet decreases with increasing cell size. This can
be understood if we look at a larger cell as an ensemble of 10
smaller cells. Comparing between independent realizations,
the variability in the size of the single, largest droplet will
be smaller if this droplet is selected from 10 cells in each
realization than if it was selected from only a single cell per
realization. Interestingly, forN0= 105 an inflection point ap-
pears around t = 500 s. It is not seen in smaller cells. This
indicates that some new source of variability is introduced.
We believe that it is associated with collisions between large
raindrops. We will come back to this in Sect. 5. Intuitively,
we would expect the time for most of the mass to accumu-
late in a single agglomerate to increase with increasing cell
size. This turns out to be true for cells with N0> 103. For
cell sizes 102<N0< 103, gelation time is approximately the
same, around 300 s.

4 Fluctuations in conversion to raindrops and validity
of the “constant SD” SDM

Fluctuations in time of conversion of cloud droplets to rain-
drops were studied using direct numerical simulations by On-
ishi et al. (2015). Following their notation, by t10 % we de-
note the time after which 10 % of the mass of cloud droplets
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Figure 3. Relative standard deviation of the mass of the largest
droplet for different cell sizes. Estimated from ensembles of
�= 104 “one-to-one” simulations for each value of N0.

Figure 4. Mean t10 % for different cell sizes and different numbers
of computational droplets NCD. In SDM simulations, NCD=NSD,
and in DNS,NCD=N0. The single DNS result is taken from Onishi
et al. (2015) (the NoT-HI case therein). Ensemble sizes are�≥ 103

for SDM simulations and �= 102 for DNS. The 95 % confidence
intervals are smaller than the plotted points. The rightmost point in
each SDM series comes from the “one-to-one” simulations. Other
points in SDM series come from the “constant SD” simulations with
various values ofNSD. The horizontal line is a value obtained by nu-
merically solving the Smoluchowski equation using the flux method
from Bott (1998).

is turned into droplets with r > 40 µm. Droplets of this size
should then quickly grow through coalescence. The time
t10 % is used as a measure of the efficiency of rain production.
We will compare the results of the “one-to-one” simulations
with DNS and try to determine how many SDs are needed in
the “constant SD” simulations to accurately represent coales-
cence. The initial droplet distribution and coalescence kernel
are the same as in Sect. 3.
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Figure 5. Relative standard deviation of t10 % against cell size.
SDM results are based on samples of at least 103 realizations. DNS
results are taken from Onishi et al. (2015). Where not shown, error
bars are smaller than plotted points. The value α= 6 was obtained
by curve fitting to the “one-to-one” results. The abbreviation “NLS”
in the legend stands for “no linear sampling”.

In Fig. 4, values of mean t10 % for different initial numbers
of droplets are plotted against the number of SDs. The results
of both the “one-to-one” (rightmost points in each series)
and “constant SD” (rest of the points in the series) simula-
tions are presented. For comparison, t10 % obtained by solv-
ing the Smoluchowski equation using the Bott algorithm is
plotted (Bott, 1998). In the Bott algorithm, we used 1t = 1 s
and mass bin spacing mi+1= 21/10mi . The same parame-
ters were used in any Bott simulation presented in this paper.
Convergence tests were done for each case. The “one-to-one”
results converge with increasing cell volume (i.e., increas-
ing N0) to a value higher than the Smoluchowski result. The
difference is probably caused by the numerical diffusion of
the Bott algorithm. In the “constant SD” simulations, the er-
ror caused by using SDs with ξ > 1 weakly depends on the
cell size. Using 103 SDs gives 〈t10 %〉 within 1 % of the “one-
to-one” value. Using 102 SDs causes about 10 % difference.
This shows that, in terms of computational cost, it is rela-
tively cheap to obtain a good estimate of the average result of
coalescence using the SDM. The SDM results are also com-
pared with the results of DNS, in which air turbulence was
not modeled but hydrodynamic interactions between droplets
were accounted for. We choose this kind of DNS because it
should be well described by the Hall kernel that is used in
the SDM and in the Smoluchowski equation. It turns out that
the Hall kernel gives overly short autoconversion times. The
same issue was observed by Onishi et al. (2015) (cf. Fig. 1b
therein).

To analyze the amplification of fluctuations in the “con-
stant SD” method, we plot the relative standard deviation of
t10 % in Fig. 5. For reference, results of DNS from Onishi
et al. (2015) are shown. Results from our “one-to-one” simu-

Figure 6. Points depict the minimal, limiting value of the relative
standard deviation of t10 % for a given number of super-droplets
in “constant SD” simulations. For each value of NSD, the minimal
value of σ(t10 %)/〈t10 %〉 is calculated as an average of the respec-
tive points to the right of the α/

√
N0 curve in Fig. 5. The line depicts

the fitted function β/
√
NSD with β = 2.

lations are in good agreement with the DNS. Small discrep-
ancies are probably caused by the fact that the DNS included
turbulence of various strength for different N0. Results of
the “one-to-one” simulations were fitted with the function
α
√

1/N0, resulting in α= 6. Figure 5 also presents fluctu-
ations in the “constant SD” simulations for various NSD.
This type of simulations gives correct amplitude of fluctu-
ations only for relatively low values of the ratio N0/NSD.
For constant NSD, as N0 increases, the amplitude of fluctu-
ations decreases correctly. Then, above some critical value
of the N0/NSD ratio, fluctuations stop to decrease and re-
main constant independent of the cell size. This is a result
of introducing unrealistic correlations between droplet sizes,
which is a consequence of using low number of computa-
tional particles (Bayewitz et al., 1974). To show that the lin-
ear sampling technique does not contribute to this effect, we
plot result of a “constant SD” simulation without linear sam-
pling for NSD= 32, which is the same as for NSD= 32 with
linear sampling. We show the limiting, minimal value of rel-
ative standard deviation of t10 % in Fig. 6. It decreases as
β
√

1/NSD, with β = 2. By comparing it with α= 6, we con-
clude that in order to obtain correct fluctuations in t10 % us-
ing “constant SD” simulations, the number of SDs has to be
NSD≥

1
9N0. Using so many SDs is not feasible in large eddy

simulations (LES), but is possible in smaller-scale simula-
tions. Also, knowing α and β, we can estimate the magnitude
of fluctuation amplification in the “constant SD” SDM.

5 Validity of the Smoluchowski equation

The Smoluchowski equation presents a mean-field descrip-
tion of the evolution of the size spectrum. It is exact only in
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Figure 7. Rain content ratio θ for different cell sizes averaged over
ensembles of�= 103 simulations. Shaded regions show 1 standard
deviation interval.

the thermodynamic limit (V →∞). We will try to determine
the minimal cell size for which the Smoluchowski equation
can be used without introducing major errors. To do so, we
analyze the evolution of θ , the ratio of rain water (r ≥ 40 µm)
content to the total water content. Onishi et al. (2015) de-
note this value by τ . We do not adopt this notation to avoid
confusion with the characteristic time.

We compare the results of the “one-to-one” simulations
with solutions of the Smoluchowski equation for two cases
– with fast and with slow rain development. In both cases
collision efficiencies for large droplets are taken from Hall
(1980), and for small droplets from Davis (1972). In sim-
ulations with fast development of rain, we use the same
initial distribution as in Sects. 3 and 4. As seen in Fig. 7,
the Smoluchowski equation gives the correct mean rain de-
velopment rate for cells with N0≥ 104. The Smoluchowski
curve is slightly shifted left, probably due to the numerical
diffusion of the Bott algorithm, as discussed in Sect. 4. In
cells smaller than N0= 104, rain develops slower than pre-
dicted by the Smoluchowski equation. Agreement of stochas-
tic coalescence in large cells with the Smoluchowski equa-
tion for a similar initial distribution was shown using the
SSA by Seesselberg et al. (1996). Onishi et al. (2015) present
figures similar to Fig. 7 but obtained from DNS runs for
N0= 7.24× 104 (Fig. 1b therein). They show good agree-
ment between DNS and the Smoluchowski equation with the
kernel of Long (1974), at least up to t = 330 s. If the Hall ker-
nel is used in the Smoluchowski equation, autoconversion is
quicker than in the DNS, as discussed in Sect. 4.

Next, we validate the Smoluchowski equation in a setup
with slow rain development. This time the initial droplet size
distribution is below the size gap, i.e., the range of radii
for which both collisional and condensational growths are
slow. We use r = 9.3 µm and n0= 297 cm−3 as in Wang et al.
(2006). In addition, we cut the distribution to 0 for r ≥ 20 µm.
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Figure 8. As in Fig. 7 but for an initial distribution with r = 9.3 µm,
n0= 297 cm−3 and a cutoff at r = 20 µm. The ensemble size is
�= 108/N0.

This cutoff is used in the SDM modeling as well as when
solving the Smoluchowski equation. That way we get rid of
the occasionally very large SDs present at t = 0 in some real-
izations of the SDM. For these initial conditions, rain devel-
opment takes much longer and fluctuations can play a bigger
role. Results are presented in Fig. 8. Again, we see conver-
gence of the “one-to-one” simulations to the Smoluchowski
result, but in this case the cell has to be larger (N0≥ 107) for
the Smoluchowski equation to be valid. The way the “one-
to-one” curves converge to the Smoluchowski curve is in-
teresting. As in the first case, in smaller cells rain appears
later than in larger cells. On the other hand, the rain forma-
tion rate (the slope of the curves in Fig. 8) in smaller cells
starts to decrease at higher values of θ than in larger cells.
In consequence, smaller cells can produce a higher rain ra-
tio than larger ones, although they started producing rain
later (e.g., compare the curves forN0= 105 andN0= 107 for
t > 4200 s). The decrease in the rain formation rate is asso-
ciated with the decrease in the concentration of raindrops nr,
plotted in Fig. 9. The number of raindrops decreases due to
collisions between drops from this category. A single drop
that is produced in such a collision is less efficient at scav-
enging cloud droplets than the two pre-collision drops. As a
result, the growth rate of θ decreases. Using large well-mixed
volumes may introduce additional, unrealistic rain–rain col-
lisions. Consider two droplets within a large cell that inde-
pendently grow to the rain category. They have to be sep-
arated enough so as not to deplete liquid water from each
other’s surroundings as they grow. If we assume that the cell
is well mixed, they can collide immediately after becoming
raindrops and generate an even larger drop. In reality, they
could collide only after some time after becoming raindrops,
because first they would need to overcome the initial separa-
tion. This means that using large well-mixed volumes, e.g., in
the Smoluchowski equation, may result in an artificial de-
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Table 1. Average and standard deviation of time (in s) for lucky realizations to produce a single drop with r ≥ 40 µm. γ is fraction of the
fastest realizations out of all� realizations that were used to compute the respective 〈t40〉γ and σ(t40)γ . The sub-ensemble size γ� is shown
to give an idea about precision of estimation of the respective statistics.

γ = 10−4 γ = 10−3 γ = 10−2 γ = 10−1 γ = 1

N0 〈t40〉γ σ(t40)γ γ� 〈t40〉γ σ(t40)γ γ� 〈t40〉γ σ(t40)γ γ� 〈t40〉γ σ(t40)γ γ� 〈t40〉γ σ(t40)γ γ�

102 2052 212 10 2930 356 10 4053 517 102 6365 1158 103 14 777 6099 103

103 1366 120 102 1762 170 103 2400 267 104 3440 505 105 6500 1700 106

104 1089 173 3 1336 103 10 1717 176 102 2354 276 103 3912 764 104

105 946 33 2 1090 60 20 1334 85 200 1721 169 2000 2552 415 104

106 1038 165 2 1301 176 20 1831 277 102
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Figure 9. Mean concentration of raindrops from the same simula-
tions as in Fig. 8.

crease in the number of raindrops and an underestimation of
the mass of rain produced.

In coalescence cells with N0≤ 104, we do not observe the
decrease in the number of raindrops within 5000 s, proba-
bly because the sizes of the raindrops are similar. In larger
cells, more raindrops with a broader distribution are formed.
In consequence, they collide more often, which decreases
their number and the rate of collection of cloud droplets.
It is likely that the additional rain–rain collisions in large
volumes are responsible for the additional inflection point
around t = 500 s in the plot of the relative standard devia-
tion of the largest droplet mass for N0= 105 (cf. Fig. 3).
They could also lead to the deviation from the ∼ 1/

√
N0

scaling shown in Fig. 5. Fluctuations in cells with N0= 107

are greater than predicted using this scaling. We also ob-
serve that for t ≤ 3000 s, the number of raindrops does not
depend on cell size (cf. Fig. 9), but that the mass of rain water
does (cf. Fig. 8). In larger cells raindrops acquire larger sizes
through collisions with cloud droplets, but the rate of auto-
conversion of cloud droplets into raindrops is not affected
much by cell size.

6 Lucky droplets

There is a well-established idea that some droplets undergo
a series of unlikely collisions and grow much faster than an
average droplet (Telford, 1955; Scott, 1967; Marcus, 1968;
Robertson, 1974; Mason, 2010). These few lucky droplets
are argued to be responsible for droplet spectra broaden-
ing and rain forming quicker than predicted by the Smolu-
chowski equation. Luck is supposed to be especially impor-
tant during crossing of the size gap, when collisions happen
rarely (Robertson, 1974; Kostinski and Shaw, 2005). A sin-
gle droplet that would cross the size gap through lucky colli-
sions could then initiate a cascade of collisions. Theoretical
estimation of the “luck factor” was presented in Kostinski
and Shaw (2005). We use the “one-to-one” simulations to
test predictions from that paper.

We are interested in the time t40 it takes until the first
droplet grows to r = 40 µm. We perform ensembles of sim-
ulations for different cell sizes N0. The size of an ensemble
is denoted by �. The initial distribution is the same as in the
second case in Sect. 5. The mean radius is r = 9.3 µm, well
below the size gap. The liquid water content is 1 g cm−3 and
the concentration is 297 cm−3, so the smallest cell that has
enough water to produce a droplet with r = 40 µm isN0≈ 80.
Therefore the smallest cell size we consider is N0= 102. For
each value of N0, we select sub-ensembles of the luckiest re-
alizations, i.e., those with the smallest t40. We consider sub-
ensembles of size γ� with log10(γ )=−4, −3, −2, −1, 0.
In each sub-ensemble, we calculate the mean 〈t40〉γ and the
standard deviation σ(t40)γ , where the subscript γ denotes the
size of the sub-ensemble from which the statistics were cal-
culated. The results for different cell sizes are shown in Ta-
ble 1.

There is a large variability in 〈t40〉γ with cell size. This is
caused by the fact that t40 depends only on a single largest
droplet. Larger cells contain more droplets, so probability of
producing single large droplet increases with cell size. We
notice that 〈t40〉γ is approximately the same along the diag-
onals of Table 1. For example, a cell containing 106 droplets
on average will produce first rain droplet in 30 min. If we di-
vided it into 10 cells with 105 droplets each, the luckiest 1 out
of 10 would also produce a droplet in 30 m on average. This
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shows that using large coalescence cells does not affect the
formation of the first raindrops. The differences discussed in
previous sections emerge later, when there are already some
raindrops that can collide with each other. To show that the
size of a coalescence cell does not affect the formation of the
first raindrops, it is helpful to think of the test presented in
this section as a simulation of a large system initially con-
taining Ntot=N0/γ droplets divided into coalescence cells
of size N0. We are interested in the mean time 〈t40〉 for the
first droplet out of all Ntot droplets to grow to r = 40 µm. In
Fig. 10 we plot 〈t40〉 against Ntot for different sizes of co-
alescence cell. It is seen that 〈t40〉 does not depend on N0.
Even using a coalescence cell with N0= 102, in which there
is barely enough water to produce a drop with r = 40 µm,
does not change the results.

Next we calculate the “luck factor”, i.e., how much faster
the luckiest droplets grow to r = 40 µm compared to the av-
erage droplets. To calculate it we use the data for N0= 102,
because cells of this size can produce only a single droplet
with r = 40 µm. Larger cells behave like an ensemble of cells
with N0= 102 as far as t40 is concerned, so calculating the
“luck factor” using t40 from larger cells would tell us how
much faster the luckiest ensemble of droplets produces a
rain droplet, compared to an average ensemble – a quantity
that we are not interested in. We find 〈t40〉1/〈t40〉10−3 ≈ 5 and
〈t40〉1/〈t40〉10−5 ≈ 11. The value of 〈t40〉10−5 was estimated
at 1366 s based on values along the diagonal for larger γ and
largerN0. Kostinski and Shaw (2005) estimate that the lucki-
est 10−3 fraction of droplets should cross the size gap around
6 times faster than average, and the luckiest 10−5 around 9
times faster. These values are in good agreement with our
observations.

7 Size of a well-mixed coalescence cell

In the previous sections we have seen that the size of the
coalescence cell has a profound impact on the evolution of
the system. In this section we estimate the size of a cell that
can be assumed to be well mixed. All methods in which the
probability of a collision of droplets depends only on the in-
stantaneous state of the cell and not on its history rely on
the assumption that the cell is well mixed. This includes the
master equation, SSA, the SDM as well as the Smoluchowski
equation. The assumption that a cell is well mixed is valid
if τmix� τcoal, where τcoal and τmix are the characteristic
times for coalescence and cell homogenization, respectively
(Lehmann et al., 2009; Gillespie et al., 2014). By well mixed
we mean that droplets should be distributed homogeneously
within the cell before every collision. Droplet coalescence
generates inhomogeneities, i.e., correlations between droplet
positions and sizes.

Rigorously, the characteristic time for coalescence is the
mean time between coalescence events, as in diffusion-
limited chemical systems (Gillespie et al., 2014). To estimate

Figure 10. Mean time until a system of Ntot droplets produces the
first droplet with r = 40 µm. The system is divided into coalescence
cells of size N0. The figure is based on the results of “one-to-one”
simulations given in Table 1.

its magnitude, consider a single large collector droplet falling
through a field of smaller droplets. Using a geometric co-
alescence kernel with efficiency E, the mean time between
collisions is τcoal= (Eπ(rl+ rs)2vrns)

−1, where rl and rs are
radii of large and small droplets, vr is the relative velocity
and ns is the concentration of small droplets. For rl= 100 µm,
rs= 10 µm, vr= 70 cm s−1,E= 1 and ns= 100 cm−3, we get
τcoal≈ 0.4 s.

Droplets in the cell can be mixed through turbulence. Tur-
bulence acts similarly to diffusion and its characteristic time
for mixing is τ tmix= (V

(2/3)/ε)(1/3), where V is cell vol-
ume and ε is turbulent energy dissipation rate (Lehmann
et al., 2009). Turbulent energy dissipation rate in clouds is
in the range from 10 cm2 s−3 for stratocumulus clouds to
103 cm2 s−3 for cumulonimbus clouds (Malinowski et al.,
2013; Grabowski and Wang, 2013). Let us assume that
τ tmix� τcoal is satisfied if τ tmix= 0.1τcoal. Even in the most
turbulent clouds, this means that the coalescence cell has to
be very small V ≈ 1.5× 10−2 cm3. On average, this volume
would contain around one droplet, depending on concentra-
tion of droplets. For such small coalescence volumes, the
Smoluchowski equation is not valid and the SDM would be
very cumbersome, because extremely short time steps would
be required. To use larger cells, we need to choose some
less strict value of characteristic time of coalescence. Some
larger cell sizes, which would be approximately well mixed,
could be found phenomenologically through fine-grid simu-
lations including droplet motion. One example of such ref-
erence simulations are DNS runs from Onishi et al. (2015)
discussed in Sect µm, the Smoluchowski equation gives cor-
rect results. This suggests that cells with N0≥ 104 can be
used in this case.

Another process that can mix droplets is sedimentation. It
is difficult to assess its timescale, because it strongly depends
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on droplet sizes. Droplets of similar sizes are not mixed by
sedimentation, but it is efficient at mixing raindrops with
cloud droplets. We can expect that it would prevent deple-
tion of cloud droplets in the surroundings of a rain droplet
that was observed for the smallest cells in Sects. 3 and 6.
Sedimentation acts only in one direction, so it could only al-
low us to use cells larger only in the vertical direction.

8 Conclusions

The super-droplet method can exactly represent stochas-
tic coalescence in a well-mixed volume. It was compared
with the master equation approach (see Sect. 3) and with
direct numerical simulations (see Sect. 4). The precision
of the SDM is controlled by the number of super-droplets
used. Fluctuations in the autoconversion time are repre-
sented well if NSD≥N0/9. Using smaller NSD increases the
standard deviation of the autoconversion time by a factor
1
3
√
N0/NSD (cf. Sect. 4). It is computationally less expensive

to correctly reproduce the mean autoconversion time. Using
NSD= 103 gives mean results within a 1 % margin, while us-
ing NSD= 102 – within 10 %.

The SDM was used to study stochastic coalescence for two
initial droplet size distributions – with small (r = 9.3 µm) and
with large (r = 15 µm) droplets. They result in slow and fast
rain formation, respectively. Dependence of the system be-
havior on the size of the well-mixed coalescence cell was ob-
served, especially in the small-droplet case. Cell size not only
affects fluctuations in the observables, but also their expected
values. If the coalescence cell is small, sizes of droplets are
strongly correlated and depletion of cloud water plays an im-
portant role. In real clouds, these two effects are probably
not manifested, because collector drop sedimentation acts
against them. In relatively large cells, raindrops collide with
each other more often than in small cells. This leads to a re-
duction in the rate of conversion of cloud water to rain water,
because scavenging of cloud droplets becomes less efficient.
In consequence, the highest rain content is produced in cells
of intermediate sizes. Possibly, these additional rain–rain col-
lisions can be justified by turbulent droplet motion and sedi-
mentation, but they might also be an artifact caused by using
an unrealistically large well-mixed volume. Fine-grid com-
puter modeling with explicit droplet motion could be used to
resolve this issue. If the additional collisions were found to
be unrealistic, it would mean that cloud models that use large
well-mixed cells, e.g., by using the Smoluchowski equation,
produce too little rain.

The additional rain–rain collisions do not affect results if
droplets are initially large. Then, collisions of cloud drops
and raindrops and between cloud droplets are frequent, so
the increase in the rate of collisions between raindrops is
not important. The mean behavior of the system converges
to the Smoluchowski equation results with increasing cell
size. Good agreement with it is found for cells withN0≥ 104.

The picture is different if droplets are initially small. Conver-
sion of cloud droplets into raindrops is slow, so the decrease
in raindrop concentration due to the additional collisions is
relatively more important. The Smoluchowski equation is
found to be valid forN0≥ 107 for the slow-coalescence case.
One could expect that condensational growth will lead to ini-
tial conditions with high radii of droplets, for which the ad-
ditional collisions are not important. Li et al. (2017) have
shown that condensation can regulate differences between
Eulerian and Lagrangian coalescence schemes. Discrepan-
cies between these schemes that they observed in simulations
with condensation and coalescence were smaller than in pure
coalescence simulations.

Another aspect of the slow-coalescence scenario is that in
it, some lucky droplets can grow much faster than average
droplets. We found that a single luckiest droplet out of 1000
grows 5 times faster than average and the luckiest out of a
100 000, 11 times faster. These values are in good agreement
with the analytical estimation of Kostinski and Shaw (2005).

We estimate a well-mixed (with respect to coales-
cence) volume in the most turbulent clouds to be only
1.5× 10−2 cm3. It is on the order of the volume occupied by
a single droplet. Larger cells can be assumed to be only ap-
proximately well mixed. For example, in the fast-coalescence
case, DNS modeling gives the same results as the Smolu-
chowski equation (Onishi et al., 2015). Box model simula-
tions using a well-mixed volume withN0= 104 droplets also
give the same results. Therefore it can be assumed that such
a volume is approximately well mixed in the case of fast co-
alescence. In the slow-coalescence case, the well-mixed vol-
ume needs to be larger than in the fast-coalescence case for
the Smoluchowski equation to be valid. The size of an ap-
proximately well-mixed cell for this case can be determined
using DNS with initially small droplets. The volume of cells
used in LES is typically 10 orders of magnitude larger than
a well-mixed volume. The LES cells do not necessarily have
to be well mixed. It is sufficient if they are homogeneous,
i.e., they are an ensemble of identical, approximately well-
mixed sub-cells. Some statistical moments for such ensem-
bles were presented in this work. In general, it is not clear
what the size of these sub-cells could be and whether the
Smoluchowski equation is valid for them.

Code availability. Simulation code is available at https://github.
com/pdziekan/coal_fluctu. The libcloudph++ library is available at
https://github.com/igfuw/libcloudphxx.
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