Articles | Volume 17, issue 21
https://doi.org/10.5194/acp-17-13417-2017
https://doi.org/10.5194/acp-17-13417-2017
Research article
 | 
10 Nov 2017
Research article |  | 10 Nov 2017

Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation

Robert C. Rhew, Malte Julian Deventer, Andrew A. Turnipseed, Carsten Warneke, John Ortega, Steve Shen, Luis Martinez, Abigail Koss, Brian M. Lerner, Jessica B. Gilman, James N. Smith, Alex B. Guenther, and Joost A. de Gouw

Data sets

Manitou Experimental Forest Observatory Field Site National Center for Atmospheric Research – Atmospheric Chemistry Observations and Modeling https://doi.org/10.5065/D61V5CDP

Download
Short summary
Alkenes emanate from both natural and anthropogenic sources and can contribute to atmospheric ozone production. This study measured light alkene (ethene, propene and butene) fluxes from a ponderosa pine forest using a novel relaxed eddy accumulation method, revealing much larger emissions than previously estimated and accounting for a significant fraction of OH reactivity. Emissions have a diurnal cycle related to sunlight and temperature, and the forest canopy appears to be the source.
Altmetrics
Final-revised paper
Preprint