Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 17, issue 19
Atmos. Chem. Phys., 17, 12239–12252, 2017
https://doi.org/10.5194/acp-17-12239-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 12239–12252, 2017
https://doi.org/10.5194/acp-17-12239-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Oct 2017

Research article | 13 Oct 2017

IASI-derived NH3 enhancement ratios relative to CO for the tropical biomass burning regions

Simon Whitburn et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Simon Whitburn on behalf of the Authors (07 Aug 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (25 Aug 2017) by Rolf Müller
RR by Anonymous Referee #2 (25 Aug 2017)
RR by Anonymous Referee #1 (04 Sep 2017)
ED: Publish subject to technical corrections (07 Sep 2017) by Rolf Müller
Publications Copernicus
Download
Short summary
Vegetation fires are a major source of NH3 in the atmosphere. A key parameter for the calculation of their emissions, which are still uncertain, is the NH3 enhancement ratio relative to carbon monoxide (CO), ERNH3 / CO. Here we derive new ERNH3 / CO ratios for large tropical regions from the measurements of IASI. We find important variability between and within the studied biomes, as well as interannual variability. This highlights the need for the development of dynamic ERNH3 / CO ratios.
Vegetation fires are a major source of NH3 in the atmosphere. A key parameter for the...
Citation
Altmetrics
Final-revised paper
Preprint