Articles | Volume 17, issue 19
https://doi.org/10.5194/acp-17-11913-2017
https://doi.org/10.5194/acp-17-11913-2017
Research article
 | 
09 Oct 2017
Research article |  | 09 Oct 2017

Impacts of stratospheric sulfate geoengineering on tropospheric ozone

Lili Xia, Peer J. Nowack, Simone Tilmes, and Alan Robock

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Lili Xia on behalf of the Authors (22 Aug 2017)  Author's response   Manuscript 
ED: Publish as is (25 Aug 2017) by Lynn M. Russell
AR by Lili Xia on behalf of the Authors (30 Aug 2017)
Download
Short summary
Ozone is a key air pollutant. We model two geoengineering schemes, stratospheric sulfur injection and solar irradiance reduction, to compare their impacts on atmospheric ozone concentrations. With the nearly identical global mean surface temperature reduction, solar dimming increases global average surface ozone concentration, while sulfate injection decreases it. This difference is due to different stratosphere–troposphere exchange of ozone and tropospheric ozone chemistry in the two scenarios.
Altmetrics
Final-revised paper
Preprint