Articles | Volume 17, issue 18
https://doi.org/10.5194/acp-17-11107-2017
https://doi.org/10.5194/acp-17-11107-2017
Research article
 | 
20 Sep 2017
Research article |  | 20 Sep 2017

Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning

Benjamin N. Murphy, Matthew C. Woody, Jose L. Jimenez, Ann Marie G. Carlton, Patrick L. Hayes, Shang Liu, Nga L. Ng, Lynn M. Russell, Ari Setyan, Lu Xu, Jeff Young, Rahul A. Zaveri, Qi Zhang, and Havala O. T. Pye

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by M. Woody on behalf of the Authors (21 Jul 2017)  Author's response   Manuscript 
ED: Publish subject to technical corrections (24 Jul 2017) by Manabu Shiraiwa
AR by M. Woody on behalf of the Authors (25 Jul 2017)  Manuscript 
Download
Short summary
We incorporate recent findings about the behavior of organic pollutants in urban airsheds into the Community Multiscale Air Quality (CMAQ) model to refine predictions of organic particulate pollution in the United States. The new techniques, which account for the volatility and ongoing chemistry of airborne organic compounds, substantially reduce biases, particularly in the winter time and near emission sources.
Altmetrics
Final-revised paper
Preprint