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Abstract. Mounting evidence from field and laboratory ob-
servations coupled with atmospheric model analyses shows
that primary combustion emissions of organic compounds
dynamically partition between the vapor and particulate
phases, especially as near-source emissions dilute and cool to
ambient conditions. The most recent version of the Commu-
nity Multiscale Air Quality model version 5.2 (CMAQv5.2)
accounts for the semivolatile partitioning and gas-phase ag-
ing of these primary organic aerosol (POA) compounds con-
sistent with experimentally derived parameterizations. We
also include a new surrogate species, potential secondary or-
ganic aerosol from combustion emissions (pcSOA), which
provides a representation of the secondary organic aerosol
(SOA) from anthropogenic combustion sources that could be
missing from current chemical transport model predictions.
The reasons for this missing mass likely include the follow-
ing: (1) unspeciated semivolatile and intermediate volatility
organic compound (SVOC and IVOC, respectively) emis-
sions missing from current inventories, (2) multigenerational
aging of organic vapor products from known SOA precur-

sors (e.g., toluene, alkanes), (3) underestimation of SOA
yields due to vapor wall losses in smog chamber experi-
ments, and (4) reversible organic compounds–water interac-
tions and/or aqueous-phase processing of known organic va-
por emissions. CMAQ predicts the spatially averaged contri-
bution of pcSOA to OA surface concentrations in the conti-
nental United States to be 38.6 and 23.6 % in the 2011 winter
and summer, respectively.

Whereas many past modeling studies focused on a par-
ticular measurement campaign, season, location, or model
configuration, we endeavor to evaluate the model and im-
portant uncertain parameters with a comprehensive set of
United States-based model runs using multiple horizon-
tal scales (4 and 12 km), gas-phase chemical mechanisms,
and seasons and years. The model with representation of
semivolatile POA improves predictions of hourly OA obser-
vations over the traditional nonvolatile model at sites dur-
ing field campaigns in southern California (CalNex, May–
June 2010), northern California (CARES, June 2010), the
southeast US (SOAS, June 2013; SEARCH, January and
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July, 2011). Model improvements manifest better correla-
tions (e.g., the correlation coefficient at Pasadena at night
increases from 0.38 to 0.62) and reductions in underpredic-
tion during the photochemically active afternoon period (e.g.,
bias at Pasadena from −5.62 to −2.42 µg m−3). Daily aver-
aged predictions of observations at routine-monitoring net-
works from simulations over the continental US (CONUS)
in 2011 show modest improvement during winter, with mean
biases reducing from 1.14 to 0.73 µg m−3, but less change
in the summer when the decreases from POA evaporation
were similar to the magnitude of added SOA mass. Because
the model-performance improvement realized by including
the relatively simple pcSOA approach is similar to that of
more-complicated parameterizations of OA formation and
aging, we recommend caution when applying these more-
complicated approaches as they currently rely on numerous
uncertain parameters.

The pcSOA parameters optimized for performance at the
southern and northern California sites lead to higher OA for-
mation than is observed in the CONUS evaluation. This may
be due to any of the following: variations in real pcSOA in
different regions or time periods, too-high concentrations of
other OA sources in the model that are important over the
larger domain, or other model issues such as loss processes.
This discrepancy is likely regionally and temporally depen-
dent and driven by interferences from factors like varying
emissions and chemical regimes.

1 Introduction

A substantial fraction of atmospheric particles are made of
organic compounds (Zhang et al., 2007; Murphy et al., 2006).
This is true over the continental United States, where pol-
lutants introduced by human sources often interact in com-
plex ways with compounds from natural sources (Hallquist
et al., 2009; De Gouw and Jimenez, 2009). In order to fully
describe the impacts that human activities have on public
health, regional haze, and climate change via airborne par-
ticles, we must be able to quantify the capacity for relevant
organic compounds to form and maintain airborne particu-
late mass (Carlton et al., 2010). To achieve this end, atmo-
spheric models routinely rely on estimates of volatility (i.e.,
vapor pressure or saturation concentration) and solubility in
a predominantly aqueous phase. Although research efforts
demonstrate clearly the importance of organic solubility in
water on phase partitioning and particle viscosity (Zhang
et al., 2012; Hodas et al., 2015; Pajunoja et al., 2015; Ri-
ipinen et al., 2015; Wania et al., 2015; Isaacman-VanWertz
et al., 2016; Jathar et al., 2016b; Pye et al., 2017; Shiraiwa
et al., 2017), improvements to the conceptual model of or-
ganic compounds partitioning into an organic-rich particu-
late phase alone are useful before the entire system is treated
holistically.

It is clear from available experimental data that primary
organic aerosol (POA), which is operationally defined as the
population of organic compounds that are emitted in the
particulate phase, is a more dynamic quantity than origi-
nally prescribed in chemical transport models (Lipsky and
Robinson, 2006; Donahue et al., 2009; Grieshop et al., 2009;
Huffman et al., 2009b, a; May et al., 2013a, b, c). Not
only do these studies show that POA evaporates upon di-
lution of exhaust from multiple sources and that it is of-
ten more volatile than secondary organic aerosol (SOA;
which had been treated as semivolatile in models), but the
semivolatile vapors that are produced are most likely suscep-
tible to continued oxidation in the gas phase. Robinson et al.
(2007) first demonstrated, by applying a chemical transport
model to predict air quality over the eastern US (EUS) in
July 2001, that treating primary particulate compounds as
semivolatile improves model performance for bulk organic
aerosol (OA) mass predictions and better predicts the rel-
ative importance of POA and SOA, which is formed from
the oxidation products of volatile organic compound (VOC)
gases. Moreover, Robinson et al. (2007) predicted that or-
ganic compounds with intermediate volatility (IVOCs), that
is, volatility higher than that of semivolatile organic com-
pounds (SVOCs) and lower than traditionally defined VOCs,
were emitted in significant quantities and that their oxida-
tion products could condense and form OA downwind of
combustion sources. An IVOC mass emission scale factor
of 1.5 times the POA+SVOC emission rate led to signifi-
cant contribution of OA derived from IVOCs when applied
in their model. However, that scale factor was uncertain, as
was the overall efficiency with which those IVOCs formed
SOA (Shrivastava et al., 2008).

More recently, both experimental and model studies have
sought to constrain combustion-related SVOC and IVOC
emissions as well as their subsequent SOA yields (Tkacik
et al., 2012; Jathar et al., 2014; Zhao et al., 2014, 2016b;
Ots et al., 2016; Jathar et al., 2017). Progress has been made
characterizing the overall significance of this OA production
pathway, but the variability among vehicles and other com-
bustion sources is uncertain, as are the effects of operating
(e.g., load, burn temperature) and environmental conditions.
Additional limitations exist in our understanding of other
important processes for SOA formation. First, multigenera-
tional aging of anthropogenic and biogenic condensable or-
ganic vapors could affect OA partitioning if chamber experi-
ments do not proceed for a long enough duration to fully cap-
ture the processes, and these processes lead to a net increase
or decrease in the volatility of the population (Hallquist et al.,
2009; Cappa and Wilson, 2012; Donahue et al., 2013; Hilde-
brandt Ruiz et al., 2015; Jathar et al., 2016a). Second, it
is likely that previous estimates of SOA yields from well-
known VOC precursors (e.g., toluene, xylene, alkanes, iso-
prene, terpenes) derived from smog chamber experiments
were biased by unaccounted loss of semivolatile organic va-
pors to the chamber walls (Hildebrandt et al., 2009; Mat-
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sunaga and Ziemann, 2010; Loza et al., 2010; Yeh and Zie-
mann, 2014; Zhang et al., 2014, 2015; Cappa et al., 2016;
Nah et al., 2016; Krechmer et al., 2016; Saha and Grieshop,
2016; Ma et al., 2017; Nah et al., 2017). The magnitude of
this bias likely varies substantially among experimental sys-
tems (i.e., precursor and oxidant identity) and experimental
conditions (e.g., seed concentration, relative humidity, tem-
perature; Krechmer et al., 2016; Nah et al., 2016). Finally,
aerosol liquid water may absorb soluble organic vapors and
shift the partitioning to enhance OA concentrations as ex-
plored by Pye et al. (2017).

Several models have now incorporated the semivolatile
POA partitioning phenomena demonstrated by Robinson
et al. (2007), relying on a framework popularly referred to
as the volatility basis set (VBS; Donahue et al., 2006, 2011,
2012). Examples of these models include box-scale (Dzepina
et al., 2009, 2011; Hayes et al., 2015; Ma et al., 2017),
regional-scale (Lane et al., 2008; Shrivastava et al., 2008;
Murphy and Pandis, 2009; Tsimpidi et al., 2010; Hodzic
et al., 2010; Hodzic and Jimenez, 2011; Murphy et al., 2011;
Ahmadov et al., 2012; Bergstrom et al., 2012; Zhang et al.,
2013; Koo et al., 2014; Matsui et al., 2014; Knote et al.,
2015; Tuccella et al., 2015; Zhao et al., 2016a), and global-
scale (Pye and Seinfeld, 2010; Farina et al., 2010; Jathar
et al., 2011; Jo et al., 2013; Tsimpidi et al., 2014; Tsi-
garidis et al., 2014) applications. Each implementation has
made assumptions about the emissions and SOA yields of
IVOCs, the reaction rates and products of multigenerational
aging, and, in some cases, the biases from chamber wall
losses of semivolatile vapors. Despite wide application of
the VBS framework, large-scale modeling studies, which in-
clude many other uncertainties from emissions inventories,
scavenging processes, and oxidant concentrations have made
slow progress towards reducing the uncertainty of the many
free parameters related to OA emission, formation, and pro-
cessing. However, the details of the implementation in CTMs
affect OA source apportionment (Hodzic et al., 2010; Pye
and Seinfeld, 2010; Murphy et al., 2012; Bergstrom et al.,
2012; Matsui et al., 2014; Hodzic et al., 2014). Current im-
plementations in global models result in a spread of 1–2 or-
ders of magnitude in OA concentrations across models, es-
pecially aloft and in remote areas (Tsigaridis et al., 2014;
Tsimpidi et al., 2017). Therefore, caution should be exercised
when adopting an SOA formation mechanism that appears
detailed but is largely unconstrained.

Hodzic and Jimenez (2011) showed that an optimized two-
parameter fit for SOA formation from anthropogenic sources
(constraining the amount and timescale of SOA formation)
could successfully capture trends observed in multiple field
studies (DeCarlo et al., 2010). That parameterization rea-
sonably reproduced aerosol mass spectrometer (AMS) ob-
servations within and downwind of a megacity. The SIM-
PLifiEd parameterization of combustion SOA (SIMPLE)
demonstrated by Hodzic and Jimenez (2011) involved one
VOC surrogate which, when oxidized by hydroxyl radicals,

formed one condensable vapor that partitioned irreversibly
to the particle phase. The use of nonvolatile SOA as an ap-
proximation was based on the observation that real SOA had
low volatility and generally much lower than used in prior
models (Dzepina et al., 2009; Huffman et al., 2009b). The
uncertain parameters, the emission of the VOC and its oxi-
dation reaction rate, were optimized for performance in the
regional model CHIMERE. This method was reapplied to
analyze urban-scale data at Pasadena (Hayes et al., 2015).
Most recently, Woody et al. (2016) applied the SIMPLE
method in the Community Multiscale Air Quality model ver-
sion 5.2 (CMAQv5.2) to Pasadena and showed substantially
improved model–measurement agreement, while Kim et al.
(2015) applied it to the SE US and showed agreement with
fossil/non-fossil carbon observations.

We document here the implementation and evaluation of
semivolatile partitioning of POA and addition of observed,
but unspeciated, SOA in CMAQv5.2. The model approach
uses the VBS framework to account for the dynamic par-
titioning and aging of POA emissions, without modifying
the two-product approach for SOA formation from tradi-
tional SOA precursor VOCs (e.g., toluene, xylene, alkanes,
isoprene, terpenes). We further introduce a new surrogate
species, potential SOA from combustion emissions (pcSOA)
to account for missing mass from IVOC oxidation, multigen-
erational aging of (anthropogenic) secondary organic vapors
(from IVOC and VOC precursors), biases in SOA yields from
vapor wall losses, and enhanced organic partitioning to the
condensed aqueous phase. In addition to these sources, pc-
SOA could account for mass from oxidation of as-yet uniden-
tified sources of SOA precursors. The contribution of this
surrogate species to the total OA burden is governed by two
parameters, analogous to the simple method of Hodzic and
Jimenez (2011) – the emission rate of the SOA precursor and
the precursor reaction rate with hydroxyl radicals. In the fol-
lowing sections we present a comprehensive evaluation of
the improvement in CMAQ OA predictions at two horizontal
resolutions (4 and 12 km) over multiple seasons and years,
using multiple gas-phase chemical mechanisms. We explore
the sensitivity of CMAQ OA to two parameters directly im-
pacting pcSOA formation and recommend important areas of
future work.

2 Organic aerosol module configuration

In developing CMAQv5.2, we have updated the OA mod-
ule to be more consistent with current understanding of POA
emission and to better represent the magnitude of SOA for-
mation from anthropogenic combustion sources.

2.1 POA semivolatile partitioning and aging

The model accounts explicitly for the gas–particle partition-
ing of primary organic compounds and their multigenera-
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Table 1. Properties of semivolatile POA species in CMAQv5.2.

Species name Molecular weight C∗, 1 NC O : C Hvap POA emission
(Particle/vapor) g mol−1 µg m−3 kJ mol−1 Fraction2

ALVPO1/VLVPO13 218 0.1 13.0 0.185 89 0.09
ASVPO1/VSVPO14 230 1 14.5 0.123 85 0.09
ASVPO2/VSVPO2 241 10 16.0 0.073 81 0.14
ASVPO3/VSVPO3 253 100 17.5 0.032 77 0.18
AIVPO1/VIVPO15 266 1000 19.0 0.00 73 0.5
ALVOO1/VLVOO16 136 0.01 5.0 0.886 93 n/a
ALVOO2/VLVOO2 136 0.1 5.5 0.711 89 n/a
ASVOO1/VSVOO1 135 1 6.0 0.567 85 n/a
ASVOO2/VSVOO2 135 10 6.5 0.447 81 n/a
ASVOO3/VSVOO3 134 100 7.0 0.345 77 n/a

1 C∗ values are defined at reference temperature 298 K. 2 Robinson et al. (2007). 3 A= aerosol; V= vapor; LV= low volatility;
PO= primary organic; 4 SV= semivolatile; 5 IV= intermediate volatility; 6 OO= oxidized organic. n/a: not applicable.

tional oxidation products with a range of volatility, similar
to the 1.5D volatility basis set scheme of Koo et al. (2014).
Table 1 lists the new species in the aerosol module as well
as important properties. Like Koo et al. (2014), we choose
surrogates with volatilities that are relevant for typical at-
mospheric loadings (i.e., 0.1–1000 µg m−3). Donahue et al.
(2011) related the volatility, expressed in terms of an effec-
tive saturation concentration C∗, to both carbon number and
O : C using structure activity relationships, vapor pressure es-
timation methods like SIMPOL (Pankow and Asher, 2008),
and available vapor pressure measurements, and we apply
their methods here (see Supplement). For the directly emit-
ted species (LVPO1, SVPO1, SVPO2, SVPO3, and IVPO1),
the carbon number (C17-C19) and O : C (0–0.1) of the new
surrogate species are chosen to be consistent with laboratory
and field observations of the properties of POA from com-
bustion sources (Aiken et al., 2008; Huffman et al., 2009a;
Presto et al., 2012; May et al., 2013a, b, c; Canagaratna et al.,
2015). Previously, Simon and Bhave (2012) used a separate
tracer, PNCOM, in CMAQ to track the contribution of non-
carbon organic matter to the total POA mixture. During the
emission input generation procedure, PNCOM emission fac-
tors were informed by the OM : OC (the ratio of total organic
mass to organic carbon mass) of individual sources (e.g., mo-
bile, 1.25; cooking, 1.4; biomass burning, 1.7). In the present
model we sum the primary organic carbon and non-carbon
emission factors in order to preserve the source-aware mass
emissions developed by Simon and Bhave (2012). Because
the new primary surrogate species have fixed O : C (Table 1),
the source resolution in O : C is lost. This limitation can be
overcome in future model versions by treating, for example,
biomass burning OA independently with additional model
species.

For the oxidation products of the directly emitted species
(LVOO1, LVOO2, SVOO1, SVOO2, SVOO3), we have cho-
sen higher OM : OC (and thus lower carbon number) val-
ues than Koo et al. (2014) to bound the typical observed

range of OM : OC reported from ambient studies, including
Aiken et al. (2008) and Canagaratna et al. (2015) for mul-
tiple US and global sites (1.3–2.25) and Simon et al. (2011)
for routine-monitoring networks in the continental US (0.79–
2.15). The molecular weights of these species are calculated
using the given carbon number and OM : OC, while assum-
ing each representative species comprises only carbon, oxy-
gen, and hydrogen atoms. The H : C is calculated from O : C
using insights from Heald et al. (2010) – a common assump-
tion for deriving molecular weights of VBS species in chem-
ical transport models. The species enthalpy of vaporization
is assumed to be a linear function of C∗ (May et al., 2013b;
Epstein et al., 2010), and the Henry’s law coefficient is pre-
scribed at 2× 108 Matm−1, which is in the range reported
for oxidized organic vapors by Hodzic et al. (2014) and Pye
et al. (2017).

We employ one volatility distribution, from Robinson et al.
(2007), for the partitioning calculation of the primary or-
ganic emissions from all combustion sources. Koo et al.
(2014) found some differences in their results when they
used separate distributions for biomass burning, gasoline,
and diesel sources. The Robinson et al. (2007) distribution
results in more aggressive POA evaporation than the source-
resolved multi-distribution parameterization. Dzepina et al.
(2009) showed that the Robinson et al. (2007) parameter-
ization resulted in POA volatility that was similar to ther-
modenuder observations. We performed a sensitivity simula-
tion using a single modified distribution calculated by sum-
ming the source-resolved distributions weighted by their to-
tal emissions in the California (CAL) domain. This simula-
tion resulted in maximum hourly POA increases of 10–15 %.
Future work will incorporate emerging measurements of pri-
mary organic compound volatility information directly into
the generation of emission inventories, along with estimating
sensitivities to key factors like ambient temperature, operat-
ing conditions, and fuel type. We do not apply a scaling fac-
tor to the POA input emission factor to, for example, intro-
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duce new SVOCs to the model. Our approach assumes that
existing inventory POA emission factors are actually repre-
sentative of the total gas- plus particle-phase mass with sat-
uration concentration below about 3200 µg m−3. It is unclear
to what extent SVOCs are missing from the emission fac-
tors that inform current inventories as these experiments were
conducted at low dilution ratios and enhanced partitioning to
the particulate phase. This issue should be resolved by taking
into account temperature and organic aerosol loading in past
and future laboratory-scale experiments when that data are
available.

Additionally, some of the semivolatile primary particle
mass that evaporates condenses back to the particle phase
after oxidation. Although direct observations of primary
combustion-derived SVOC aging are rare, both field re-
sults (Chan et al., 2013) and their relatively large car-
bon numbers support that they are susceptible to OH ox-
idation and SOA formation in the atmosphere. We apply
an OH oxidation reaction with a rate constant equal to
4.0× 10−11 cm3 molec−1 s−1 to simulate this aging, consis-
tent with previous modeling studies (Grieshop et al., 2009;
Farina et al., 2010; Murphy and Pandis, 2009; Koo et al.,
2014; Zhao et al., 2016a). The stoichiometric coefficients
for this oxidation step are derived using 2D-VBS theory for
low-NOx systems (Donahue et al., 2011, 2012) and are doc-
umented in supporting information. The branching ratio for
functionalization and fragmentation processes is parameter-
ized as in Eq. (1).

βfrag = (O : C)0.4 (1)

The aging configuration tends to produce lower volatility
(thus more particulate) mass than that used by Koo et al.
(2014) and produces slightly less total organic mass (OM)
than the full 2D-VBS model of Chuang and Donahue (2016)
(see Fig. S1a in the Supplement). The bulk O : C enhance-
ment due to aging is more vigorous in this model compared
to the full 2D VBS. However, the rate of O : C enhance-
ment is about half that of the POA aging scheme imple-
mented in older CMAQ versions (Simon and Bhave, 2012)
(see Fig. S1b).

2.2 SOA from traditional precursors

SOA formed from oxidation of traditional VOC sources (iso-
prene, monoterpenes, sesquiterpenes, benzene, toluene, xy-
lene, alkanes, and PAHs) are documented in Carlton et al.
(2010) and Pye and Pouliot (2012). The SOA yields of
these compounds has been unchanged in the development
of CMAQv5.2, although updates to their molecular proper-
ties (solubility, molecular weight, OM : OC, etc.) were incor-
porated to maintain consistency throughout the model pro-
cesses (Pye et al., 2017). CMAQv5.2 also includes aqueous
processing of isoprene epoxides, glyoxal, and methylglyoxal,
as well as production of oligomeric species from particle-
phase reaction of traditional SOA compounds. We do not

employ the recent liquid–liquid phase partitioning algorithms
implemented by Pye et al. (2017).

2.3 Potential SOA from combustion emissions

Because the individual contributions to the total bias from
missing IVOC oxidation, missing multigenerational aging
of VOC oxidation products, under-representing SOA yields
because of chamber wall losses, and uptake of organics by
aerosol liquid water are all uncertain, we introduce one sur-
rogate aerosol species, pcSOA, to address the total missing
OA mass. Three essential features are common among the
aforementioned uncertain processes: they involve emission
of gas-phase compounds, some degree of photooxidation of
those compounds, and condensation of the resulting prod-
ucts. Thus, we simulate this formation process analogously
to the SIMPLE approach of Hodzic and Jimenez (2011). A
new surrogate VOC species (potential VOC from combustion
emissions, pcVOC) is introduced with an emission rate that is
scaled to the POA mass emission rate. This species does not
partition directly to the particle phase and, in that respect, be-
haves as a VOC in the model. It is oxidized with OH to form
a low-volatility condensable vapor – potential secondary or-
ganic gas from combustion emissions, pcSOG (Table 2). For
the BASE (base emission, base reaction) simulation we as-
sume an OH reaction rate constant equal to the optimal rate
constant reported by Hayes et al. (2015), and we convert the
optimal emission scale factor of Hayes et al. (2015), which is
scaled from CO emissions to one that can be applied to POA
emissions. To convert from g−1 CO to g−1 POA, we multiply
by the average ratio of CO emissions to POA emissions in the
CONUS11 (Table 3) emissions dataset, 0.82. A promising al-
ternative to scaling emissions to POA emissions could be to
apply an SOA yield directly to the oxidation of total non-
methane organic gases (NMOG), as demonstrated in Jathar
et al. (2014) and implemented by Jathar et al. (2017) for ve-
hicle emissions. Unfortunately, NMOG emissions inventory
data, as they currently stand, do not always take into account
the evaporation of primary vapors nor are they always treated
consistently by typical emissions processing practices. We
consider the implementation of semivolatile POA and miss-
ing combustion SOA in CMAQv5.2 an important step toward
an even more rigorous future treatment, whether that involves
scaling emissions to CO or NMOG. As such, we have priori-
tized minimizing the need for reprocessing emissions inputs
for users of previous CMAQ versions, but this does leave
room for future refinement of source-specific SOA formation
from unspeciated vapor emissions.

The emissions of pcVOC are applied to all combustion-
related area and point sources of primary organic carbon
except for wildfires (classified as point sources), as it has
been shown that fire plumes do not exhibit an SOA enhance-
ment as strong as those dominated by urban emissions (Cubi-
son et al., 2011). Thus, important sources like on-road vehi-
cles, power plants, and commercial cooking are all included.
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Table 2. Properties of potential SOA from combustion emissions (pcSOA) species and its precursor, pcVOC, for the base case (BASE)
CMAQ simulation.

Property Value

Molecular weight 170 g mol−1
Emissions scale factor (pcVOC/POA) 0.0568 mol g−1
OH oxidation rate constant (kOH) 1.25× 10−11 cm−3 molec−1 s−1

Condensable product saturation concentration (C∗) 10−5 µg m−3

Hayes et al. (2015) and Ma et al. (2017) showed that resi-
dential as well as commercial cooking sources of SOA are
potentially an important contribution to non-fossil carbon in
Pasadena, and residential cooking sources are missing from
the inventories used here. The inclusion of both residential
wood burning and agricultural burning area sources in the pc-
SOA parameterization should be investigated further and po-
tentially treated separately in the future by adding more de-
tailed online source resolution to the CMAQv5.2 OA model.
The partitioning between pcSOG and pcSOA is governed
by a saturation concentration equal to 1× 10−5 µg m−3. Al-
though heterogeneous reactions are implemented for other
SOA types in CMAQ, no further reactions are included
for pcSOA. Additionally, photolysis leading to degradation
of low-volatility material is not considered in the model
(Hodzic et al., 2015). The low volatility of pcSOA makes this
OA configuration behave similarly in many ways to the ap-
proach of Shrivastava et al. (2013), which attempts to account
for semisolid OA behavior and oligomer formation; however,
there are important differences. All OA mass (including pc-
SOA) is treated as an absorbing medium in our approach and
pcSOA is created through direct oxidation and condensation
of gas-phase species, not through a particle-phase transfor-
mation. Future work will address the role of diffusion-limited
OA absorptive partitioning and its dependence on relative hu-
midity. The emission scale factor and oxidation rate constant
are uncertain parameters, and we present a sensitivity anal-
ysis of them in order to both demonstrate the relevance of
this uncertainty to total OA concentrations and to recom-
mend acceptably performing parameters for use in opera-
tional CMAQv5.2 simulations.

3 Model application

We apply CMAQv5.2 with the enhanced OA module to three
distinct simulation domains: the continental United States,
the eastern United States, and California. The time periods
and chemistry options, detailed below, are chosen to leverage
existing observations while also evaluating the model under
various configurations. The individual simulations are sum-
marized in Table 3.

3.1 Observations

In order to connect the performance of the updated model
with past CMAQ versions, we evaluate predictions against
organic carbon (OC) observations from routine-monitoring
networks including the Interagency Monitoring of Protected
Visual Environments (IMPROVE) and Chemical Speciation
Network (CSN) datasets. We note that IMPROVE data had a
27 % low bias relative to collocated SEARCH observations
during summer 2013 in the SE US, which is thought to be
due to evaporation during sampling and transport (Kim et al.,
2015). That bias was not observed for non-summer samples.
Additionally, we focus on three intensive measurement cam-
paigns: the California Research at the Nexus of Air Quality
and Climate Change (CalNex), the Carbonaceous Aerosols
and Radiative Effects Study (CARES), and the Southern Ox-
idant and Aerosol Study (SOAS). At these sites, CMAQ OA
predictions are evaluated against High-Resolution Time-of-
Flight Aerosol Mass Spectrometer (HR-ToF-AMS) data. The
Southeastern Aerosol Research Characterization (SEARCH)
network sites located in the southeast US provide semi-
continuous OC observations also used to evaluate model ca-
pability during the SOAS time period. Two urban sites, Jef-
ferson Street, Atlanta, GA, and Birmingham, AL, and one
rural site, Yorkville, GA, are selected. During the CARES
and SOAS campaigns, thermodenuder measurements allow
us to make a quantitative evaluation of the OA volatility dis-
tribution predicted by the model.

The CalNex campaign characterized atmospheric compo-
sition at two sites in southern California, Pasadena, and Bak-
ersfield, from 15 May to 29 June 2010 (Ryerson et al., 2013).
The Pasadena site was located 18 km northeast and generally
downwind of downtown Los Angeles, while the Bakersfield
site was situated at the southern end of the San Joaquin Val-
ley (SJV). Several studies characterized OA properties and
likely sources at Pasadena and the larger LA basin with ob-
servations (Washenfelder et al., 2011; Bahreini et al., 2012;
Borbon et al., 2013; Hersey et al., 2013; Liu et al., 2012a;
Hayes et al., 2013; Fast et al., 2014; Knote et al., 2014;
Ma et al., 2017), while others combined measurements with
models at multiple scales (Chan et al., 2013; Ensberg et al.,
2014; Hayes et al., 2015; Baker et al., 2015; Woody et al.,
2016). On average, organic compounds comprised 41 % of
the total PM1 mass concentrations at Pasadena and exhib-
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Table 3. CMAQ model scenarios used for this study.

Name Spatial domain Duration Gas-phase chemical Reference
mechanism

CAL Southwestern US 3 May–30 Jun 2010 CB05e51 Baker et al. (2015);
Woody et al. (2016)

EUS Eastern US 1–30 Jun 2013 SAPRC07tic Pye et al. (2015)
CONUS11 Continental US 1 Jan–31 Dec 2011 CB05e51 Appel et al. (2017)
CONUS02 Continental US 1–30 Jan; 1–31 Jul 2002 CB05e51 Bash et al. (2013)

ited a strong diurnal-averaged peak concentration in the mid-
afternoon (15:00 local time; Hayes et al., 2013). At Bakers-
field, OA compounds comprised 56 % of the total PM1 mass,
and fossil fuel sources were determined to contribute 80–
90 % of those components (Liu et al., 2012b; Gentner et al.,
2014). Average O : C at Pasadena ranged from about 0.38 to
0.48 throughout the campaign with some extreme values ex-
tending to 0.8.

The CARES campaign took place in northern California
from 2 to 28 June 2010 and conducted measurements at
two ground sites, Sacramento and Cool, and from the DOE
G-1 aircraft (Zaveri et al., 2012). The Cool site is a suit-
able location to observe interactions among anthropogenic
and biogenic pollutants due to its proximity to outflow from
Sacramento and the forested foothills of the Sierra Nevada
mountains (Setyan et al., 2012, 2014). Like those at the
CalNex stations, observations during CARES indicated that
organic compounds dominated (∼ 80 %) the particle-phase
mass composition at both sites (Setyan et al., 2012; Shilling
et al., 2013). Shilling et al. (2013) and Setyan et al. (2012)
showed that the combination of anthropogenic and biogenic
pollutants in the vicinity of Sacramento could enhance SOA
formation significantly beyond instances when just anthro-
pogenic or just biogenic sources contributed.

The SOAS campaign also targeted observations of
anthropogenic–biogenic interactions but at three sites (Cen-
treville, AL; Birmingham, AL; and Look Rock, TN) in the
substantially differing southeastern US environment during
June and July 2013 (Carlton et al., 2016). Anthropogenic
emissions, including NOx and SO2, have large influence
on isoprene and monoterpene SOA in both rural and urban
platforms (Budisulistiorini et al., 2015; Hu et al., 2015; Xu
et al., 2015; Rattanavaraha et al., 2016). Pye et al. (2015) and
Xu et al. (2015) found that organic nitrate chemistry likely
played a substantial role in the formation of observed less-
oxidized oxygenated OA (LO-OOA) compounds at the Cen-
treville site. Xu et al. (2015) also found that SOA from iso-
prene oxidation contributed 18 % of the total OA averaged
throughout the campaign.

3.2 Model configuration and analysis

We configured CMAQv5.2 to simulate air quality over Cali-
fornia at a horizontal resolution of 4 km by 4 km during May

and June 2010. The input parameters are documented exten-
sively by Baker et al. (2013), Baker et al. (2015), and Woody
et al. (2016) and are summarized briefly here. Meteorolog-
ical inputs are generated using the Weather Research and
Forecasting Model (WRF) Advanced Research WRF core
version 3.1 (Skamarock et al., 2008). Baker et al. (2013)
evaluated the meteorological parameters (temperature, wind
speed, wind direction, etc.) and found acceptable perfor-
mance. The boundary conditions were generated from run-
ning a coarser resolution CMAQ simulation from Decem-
ber 2009 through June 2010. That coarse simulation used
boundaries driven by a GEOS-Chem (v8-03-02) simulation
from the same period (Henderson et al., 2014). Electrical
generating unit and other point source emissions were esti-
mated specifically for 2010 using continuous emissions mon-
itoring data. Mobile source emissions were generated using
a combined approach of generation by the SMOKE-MOVES
integration platform (US Environmental Protection Agency,
2014) and projection by the California Air Resources Board.
Other anthropogenic emissions are based on the 2011 Na-
tional Emissions Inventory (NEI) version 1 (US Environ-
mental Protection Agency, 2014). Day-specific fire emis-
sions are incorporated into the model inputs, although they
do not impact concentrations in Pasadena to a large ex-
tent (Hayes et al., 2013). Setyan et al. (2012) and Shilling
et al. (2013) also found low impact from biomass burning at
both CARES sites. Residential meat-cooking emissions are
not included in the emissions inventory as pointed out by
Woody et al. (2016). That study found that CMAQ underpre-
dicted cooking-influenced OA by a factor of 2–4, depending
on the time of day and assumptions about the volatility of
meat-cooking emissions. Biogenic vapor emissions are gen-
erated by the Biogenic Emission Inventory System (BEIS)
v3.14 (Carlton and Baker, 2011). A modified version of Car-
bon Bond 5 (CB05e51) simulated gas-phase chemical kinet-
ics including ozone formation/destruction and OA formation
among other processes.

The SOAS campaign was addressed with a second simula-
tion over the eastern United States during June 2013 at 12 km
by 12 km horizontal resolution. The WRF core model ver-
sion 3.6.1 was applied for meteorological inputs, and bound-
ary conditions were obtained from a 36 km by 36 km CMAQ
simulation using boundary conditions informed by GEOS-
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Chem (Henderson et al., 2014). As explained by Pye et al.
(2015) and Pye et al. (2017), anthropogenic emissions were
based on the Environmental Protection Agency (EPA) Na-
tional Emissions Inventory 2011 v1, and biogenic emissions
were obtained from BEIS v3.6.1. This implementation in-
cluded enhanced detail in the formation of isoprene SOA
and organic nitrate kinetics and partitioning. Fire emissions
were based on the latest version of the Satellite Mapping
Automated Reanalysis Tool for Fire Incident Reconcilia-
tion system (SMARTFIRE, www.airfire.org/smartfire/). The
Statewide Air Pollution Research Center (SAPRC07) mech-
anism was used to predict gas-phase chemistry.

In order to extend results further, we perform a suite
of simulations over the continental United States at 12 km
by 12 km horizontal resolution for the entire year 2011
(CONUS11), thereby probing seasonal differences in model
performance. Year-to-year variability is assessed with ad-
ditional runs over the continental US during January and
July 2002 (CONUS02). Anthropogenic, biogenic, and day-
specific fire emissions for the CONUS simulations are doc-
umented by Appel et al. (2017). The CONUS02 meteo-
rological inputs were generated by WRF version 3.1, and
anthropogenic emissions were derived from the 2002 NEI
(Bash et al., 2013). The OA boundary conditions are down-
scaled from GEOS-Chem simulations, and we prescribe an
OM : OC for these compounds equal to 2.0. We estimated
organic carbon, which was measured at each site, from the
model output by taking into account the species-dependent
O : C and calculating an OM : OC using the approach of Si-
mon and Bhave (2012).

To probe sensitivity to the uncertain pcVOC emission
scale factor and oxidation rate constant, we explore a series
of perturbation runs varying both of these parameters (Ta-
ble 4). The parameter combinations are chosen to bound ac-
ceptably performing estimates of the parameters at Pasadena
(Hayes et al., 2015). We convert the perturbed pcVOC emis-
sions scale factors from g−1 CO to g−1 POA with the same
conversion factor used for the BASE simulation. In addition
to these sensitivity cases, we run a case that uses the same OA
module configuration as CMAQv5.1 (nvPOA). Specifically,
the nvPOA case includes nonvolatile POA aging consistent
with Simon and Bhave (2012) and SOA formation from tra-
ditional VOC precursors. No pcSOA is implemented for the
nvPOA case. We apply all of these cases to the CAL do-
main and to both January and July of the CONUS11 domain.
Meanwhile, due to computation time constraints, we only ex-
amine the BASE case, the best-performing CONUS11 case
(low emission, base reaction; LEBR), and the nvPOA case
for the other months of 2011 and for the EUS and CONUS02
domains.

For semi-quantitative evaluations generally within individ-
ual or among similar datasets, we utilize standard statistical
metrics to characterize model performance. These metrics
include the mean bias (MB; µg m−3), mean normalized er-
ror (MNE), and correlation coefficient (r). For more rigorous

quantitative analysis, we employ the normalized mean bias
factor (NMBF, Eq. 2) and normalized mean absolute error
factor (NMEF, Eq. 3) developed by Yu et al. (2006).

NMBF= S
[

exp
(∣∣∣∣ln∑Mi∑

Oi

∣∣∣∣)]− 1, (2)

NMEF=
∑
|Mi −Oi |(∑

Oi
)[1+S]/2(∑

Mi

)[1−S]/2 , (3)

where M are model predictions, O are observations, and
S = (M −O)/|M −O|. These metrics were specifically de-
signed to address biases that arise from comparing datasets
with substantially different mean values (e.g., urban and rural
locations) and widely varying degrees of over- and underpre-
diction. If NMBF is positive (e.g., 0.6), then the model over-
estimates the observations by a factor of 1+NMBF (1.6),
on average. If NMBF is negative (e.g., −0.6), the model
underestimates the observations by a factor of 1−NMBF
(1.6), on average. The NMEF is interpreted as follows: if
NMEF= 1.8, then the model gross error is 1.8 times the
mean observation for overprediction or 1.8 times the mean
model prediction for underprediction, on average.

4 Results and discussion

4.1 Evaluation against continuous OA mass
observations

CMAQv5.2 with semivolatile POA and pcSOA (BASE) suc-
cessfully captured the day–night OA variability substan-
tially better than the model with nonvolatile POA (nvPOA)
(Fig. 1). Across all sites, improved predictions were due di-
rectly to both the volatilization of primary emissions in the
morning and night and to the increased role of secondary for-
mation via pcSOA in the afternoon. We expect these two phe-
nomena to play the largest role in urban locations, like Los
Angeles, with high combustion emissions and active pho-
tochemistry. At Pasadena, the daytime MB improved from
−5.62 to −2.42 from the nvPOA to the BASE case, consis-
tent with Woody et al. (2016), while the correlation improved
from 0.67 to 0.79. The remaining underprediction is qualita-
tively consistent with Ensberg et al. (2014), who concluded
that current estimates of SOA mass from gasoline and diesel
emissions cannot produce the SOA observed in Pasadena
if unaccounted-for non-vehicular sources contribute heav-
ily to the pool of SOA precursors. Positive matrix factoriza-
tion (PMF) analysis of the observed OA into surrogate com-
ponents revealed the strong influence of semivolatile oxy-
genated organic aerosol (SV-OOA, dominated by compounds
emitted locally) in generating the afternoon OA loadings
Hayes et al. (2015). The pcSOA approach reproduced this
buildup of daytime urban SOA much closer than the nvPOA
case.
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Table 4. Details of base and sensitivity simulation exploring pcSOA formation parameters.

Simulation pcVOC emission scale kOH Model domains
factor (mol g−1) (cm−3 molec−1 s−1)

Nonvolatile POA (nvPOA) n/a n/a CAL, EUS, CONUS11, CONUS02
Base emission, base reaction (BASE) 0.0568 1.25× 10−11 CAL, EUS, CONUS11 (Jan, Jul)
Low emission, base reaction (LEBR) 0.0387 1.25× 10−11 CAL, EUS, CONUS11, CONUS02
High emission, base reaction (HEBR) 0.07 1.25× 10−11 CAL, CONUS11 (Jan, Jul)
Base emission, low reaction (BELR) 0.0568 1.0× 10−11 CAL, CONUS11 (Jan, Jul)
Base emission, high reaction (BEHR) 0.0568 2.0× 10−11 CAL, CONUS11 (Jan, Jul)
Low emission, high reaction (LEHR) 0.0387 2.0× 10−11 CAL, CONUS11 (Jan, Jul)
High emission, low reaction (HELR) 0.07 1.0× 10−11 CAL, CONUS11 (Jan, Jul)

n/a: not applicable.

The BASE case performed similarly to the nvPOA case
in Pasadena at night. There, the PMF analysis indicated
that the low-volatility oxygenated organic aerosol (LV-OOA)
surrogate dominated with roughly constant diurnal-averaged
concentrations (∼ 2 µg m−3; Hayes et al., 2015). LV-OOA
had a significant contribution from regional (nonurban) bio-
genic OA. Other OA components such as hydrocarbon-
like OA (HOA), cooking-influenced OA (CIOA), and lo-
cally sourced OA (LOA) contributed less throughout the day
(∼ 0.5–1 µg m−3), although the concentrations of CIOA were
elevated at night. The lack of significant observed OA growth
at night–early morning and the lack of observed correlation
between aerosol liquid water content and the fraction of con-
densed water-soluble organic compounds indicated a less im-
portant role of nighttime chemistry due to nitrate radicals
or aqueous phase uptake (Hayes et al., 2013; Zhang et al.,
2012).

Aggregate daytime predictions at the Bakersfield site im-
proved dramatically as well (Fig. 1). Bulk factor analysis
of AMS and Fourier-transform infrared spectroscopy (FTIR)
observations indicated five principal PM1 source categories
including aromatic SOA (24 %), alkane SOA (41 %), OA
formed at night (10 %), SOA from petroleum operations
(14 %), and vegetative detritus (10 %). Multiple studies have
characterized the importance of organic nitrates for night-
time SOA composition at the site (Liu et al., 2012b; Rollins
et al., 2012; O’Brien et al., 2013), while daytime OA for-
mation appears to be driven by oxidation of primary vapors
followed by condensation (Zhao et al., 2013). Baker et al.
(2015) showed that CMAQv5.0.2 with nonvolatile POA un-
derpredicted PM2.5 organic carbon concentrations at both
Pasadena and Bakersfield, with fractional biases (FB) of−53
and −144 %, respectively, generally consistent with results
from CMAQv5.2 with nonvolatile POA (FB of −76 and
−79 %, respectively).

The BASE case underpredicted concentrations at Bakers-
field at night, and this was partially due to missing particle-
phase organic nitrate compounds (Rollins et al., 2012) that
are not formed in the gas phase by the CB05e51 mecha-

nism used in the CAL simulation (see Fig. S4). Amine com-
pounds contributed about 10 % or less of OA at Bakers-
field (Liu et al., 2012b) and Pasadena (Hayes et al., 2013);
these are missing from the particle-phase representation in
this version of CMAQ as well. The day–night trends are
consistent with the results of WRF-Chem application to the
same campaign Fast et al. (2014). Differences that emerge
include a stronger OA daytime peak predicted by CMAQ at
Pasadena and higher nighttime concentrations predicted by
WRF-Chem at Bakersfield. These differences may have re-
sulted from the use of slightly different anthropogenic emis-
sion inventories and selection of different modules for plan-
etary boundary layer dynamics.

At Sacramento, the nvPOA case predicted significantly
higher total OA concentrations at night (MB= 0.48 µg m−3)
than during the day (MB=−1.13 µg m−3), while the
BASE model agreed better with observations (nighttime
MB=−0.35; daytime=−0.41 µg m−3). The magnitude of
the day–night performance for the rural Cool site was en-
couraging (MB=−0.46 and−0.05, respectively), as was the
correlation (r = 0.74 and 0.63, respectively). Setyan et al.
(2012) isolated three factors using PMF analysis at Cool, in-
cluding hydrocarbon-like organic aerosol (9 % of total OA),
a less-oxidized oxygenated OA (50.3 %) that peaked in the
early evening, and a more-oxidized oxygenated OA (MO-
OOA, 40.7 %) that stayed relatively constant throughout the
day with slightly elevated concentrations at night. The au-
thors concluded that the LO-OOA was correlated with urban
transport while the MO-OOA was likely influenced by bio-
genic VOC oxidation. The fact that about 60 % of the total
OA mass was related to urban sources helps explain why the
introduction of POA partitioning and pcSOA mass in CMAQ
would make a difference to predictions at the Cool site, in the
absence of regional fire events. As urban plumes move down-
wind, pcSOA and POA aging in the BASE case replace most
of the evaporated POA and may add extra mass to the total
OA burden. For example, the additional anthropogenic OA
mass improved model performance at the Cool site, which is
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Figure 1. Organic aerosol concentrations (µg m−3) observed (gray)
with the HR-ToF-AMS at sites in California in 2010 (Pasadena,
Bakersfield, Sacramento, and Cool). Also shown are the model-
predicted distributions at each site using the nonvolatile (pink) and
base-case semivolatile (green) configurations. The boxes denote the
25th and 75th percentiles of each dataset, while the whiskers ex-
tend to the most extreme points. (a) and (b) show data for daytime
(08:00–20:00 LT) and nighttime hours, respectively. Model values
are projected to PM1 to correspond roughly to the size cutoff of the
AMS.

often directly downwind of Sacramento, but had less impact
on the rural Centreville, AL, site (see Fig. S4).

The BASE case, run for the EUS domain (Fig. 2), sig-
nificantly underpredicted observations at both Centreville,
Look Rock, and Yorkville (daytime MB=−2.42, −3.39,
and −0.66 µg m−3, respectively) although the OA update
does improve predictions slightly compared to the nvPOA
case (daytime MB=−2.72, −3.78, and −1.16 µg m−3, re-
spectively). Correlation coefficients improved at all locations
during both day and night, with one exception at Centre-
ville during night. Biogenic SOA was the main OA compo-
nent during SOAS (Xu et al., 2015), and CMAQv5.2 poten-
tially under-represents these compounds due to uncertainties
in NOx-dependence, oxidant loadings, and missing organic-
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Figure 2. Observed (gray) and modeled (pink, green) organic
aerosol (µg m−3) and organic carbon (µgC m−3) concentrations at
sites in the southeast US. OA concentrations at the SOAS sites, Cen-
treville and Look Rock, were measured with HR-ToF-AMS, while
OC concentrations at the SEARCH sites, Birmingham, Atlanta,
and Yorkville were inferred as the difference between total car-
bon measured by ambient particulate carbon monitors and elemen-
tal carbon measured by aethalometers. Also shown are the model-
predicted distributions at each site using the nonvolatile (pink) and
base-case semivolatile (green) configurations. The boxes denote the
25th and 75th percentiles of each dataset, while the whiskers ex-
tend to the most extreme points. (a) and (b) show data for daytime
(08:00–20:00) and nighttime hours, respectively. Model values for
the SOAS sites are projected to PM1 to correspond roughly to the
size cutoff of the AMS, while for the SEARCH sites the sum of the
Aitken and accumulation modes was applied. All model data are
produced from the EUS simulation, which uses SAPRC07tic and
occurs during June 2013.

water interactions (Pye et al., 2017), as they are not yet in-
cluded in this version of the model. Although previous stud-
ies have demonstrated vapor wall losses to have a relatively
small effect on SOA formation from α-pinene ozonolysis
(Nah et al., 2016; McVay et al., 2016) and β-pinene oxi-
dation by nitrate radicals (Boyd et al., 2015), it is unclear
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to what extent vapor losses may influence SOA yields from
other monoterpene and sesquiterpene precursors or from re-
action with OH. Further studies on vapor wall losses are nec-
essary. The BASE case predicts that the composition of total
OA at Centreville was 65 % biogenic SOA, 30 % combustion
SOA, and 5 % POA. A prior simulation using GEOS-Chem
and a similar implementation of the SIMPLE parameteriza-
tion for urban and biomass burning SOA identified a contri-
bution of 28 % of the OA from urban sources, which was con-
sistent with the fossil fraction of the carbon at the Centreville
site (Kim et al., 2015). Predictions from the BASE model
are similar, especially since combustion SOA and POA are
from both anthropogenic and biomass burning combustion
sources. The model predictions for the EUS domain include
semi-explicit treatments of isoprene SOA (Pye et al., 2013)
and terpene nitrate SOA formation (Pye et al., 2015), follow-
ing the approach of Pye et al. (2017).

The inclusion of semivolatile POA and pcSOA did not lead
to much change in southeastern US urban centers, Birming-
ham and Atlanta (see Fig. S4), but there was improvement at
night in both locations (MB reductions of ∼ 50 %). Pye et al.
(2017) estimated that primary organic carbon was overpre-
dicted by a factor of 1.8 in the southeast US, thereby com-
pensating for the underestimated SOA in that study.

Figure 3 compares CMAQ OA species to AMS factors
derived from PMF analysis at Pasadena, Bakersfield, and
Cool. PMF analysis was not available at the Sacramento site,
and the Centreville and Look Rock sites showed negligi-
ble presence of HOA throughout the SOAS campaign. For
the nvPOA case, POA was calculated as the sum of CMAQ
species POC and PNCOM and evaluated against observed
HOA, even though some fraction of the material is aged. Si-
mon and Bhave (2012) showed that this aging is predicted
to add a modest amount of non-carbon mass to POA in
California (∼ 20 % or less). For the BASE case, POA was
summed from the fresh primary organic emissions (LVPO1,
SVPO1, SVPO2, SVPO3, and IVPO1) and evaluated against
HOA. This model–observation comparison clearly indicates,
as many past studies have, that most OA, even in urban ar-
eas is partially or heavily oxygenated and that models us-
ing an approach like the nvPOA case replace OA formed by
secondary processing with primary emissions. Thus, those
models get an approximately correct estimate of OA concen-
trations for the wrong reasons and often with the wrong di-
urnal profile (see Sect. 4.2; De Gouw and Jimenez, 2009).
At Pasadena, the nvPOA case overestimated HOA concen-
trations by a factor of 2.0. Treating the POA as semivolatile
in the model resolved this discrepancy by reducing the pre-
dicted HOA factor. The combination of primary vapor aging
and introduction of pcSOA resolved the OOA underpredic-
tion (MB improved from −4.45 to −0.81 µg m−3). Figure 3
shows similar results at Bakersfield and Cool: average HOA
predictions were reduced dramatically from the nvPOA to
BASE case, while OOA predictions increased but still under-
predicted observations by −1.3 and −0.28 µg m−3. The un-
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Figure 3. Comparison of OA factors derived from positive matrix
factorization (PMF) of HR-ToF-AMS observations (gray) at sites in
California (Pasadena, Bakersfield, and Cool). Also shown are the
model-predicted concentrations of each factor at each site using
the nonvolatile (pink) and base-case semivolatile (green) configu-
rations. (a) compares estimations for hydrocarbon-like OA (HOA)
and (b) for oxygenated OA (OOA). The boxes denote the 25th and
75th percentiles of each dataset, while the whiskers extend to the
most extreme points.

derprediction disappears if the HOA- and OOA-observed and
predicted concentrations are normalized by the CO enhance-
ment (1CO; see Fig. S2). Because normalizing by 1CO re-
duces the influence of errors in transport and dilution, this
metric better isolates the performance of the specific chem-
ical and microphysical processes under investigation here.
However, confidence in CO model performance from CMAQ
is uncertain and should be evaluated regularly and in greater
detail in the future. Baker et al. (2015) and Woody et al.
(2016) noted that the CO concentrations predicted by CMAQ
during CalNex were systematically 10–30 % lower, and po-
tentially emblematic of a general limitation of CMAQ capa-
bilities for CO prediction.

Both Hayes et al. (2013) and Woody et al. (2016) used the
slope of OOA as a function of odd oxygen (Ox =O3+NO2)
as an indicator of how well the model captured the general
magnitude for urban SOA formation and its dependence on
available oxidants. Hayes et al. (2013) found this slope at
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Pasadena to be 146 µg m−3 ppbv−1, which is more consis-
tent with the BASE model prediction (103 µg m−3 ppbv−1)
than with the nvPOA model (7 µg m−3 ppbv−1). While the
BASE model does better in capturing urban OOA, it still
underpredicts its magnitude of OOA formation by 35 % ac-
cording to this metric. The underprediction appears more
pronounced at the highest Ox levels, according to Fig. 4.
Woody et al. (2016) found similar improvement in this
metric when applying a version of CMAQ that explic-
itly included aging of first-generation anthropogenic OOA
(slope equal to 72 µ g m−3 ppbv−1). They noted that CMAQ
predictions could match the observed slope well if reac-
tive anthropogenic SOA precursor vapors were added to
account for missing SVOCs and IVOCs. It is not sur-
prising that the BASE model performance falls between
these two cases since the pcSOA model species was de-
signed to account for these and other uncertain SOA for-
mation processes. Model performance between the nvPOA
and BASE cases improves similarly at Bakersfield (mobs =

80 µ g m−3 ppbv−1, msvPOA = 54 µ g m−3 ppbv−1) and Cool
(mobs = 75 µ g m−3 ppbv−1, msvPOA = 64 µ g m−3 ppbv−1).
As with the HOA–OOA comparison, normalizing by 1CO
improves the model performance even further, possibly can-
celing errors in meteorological phenomena and dispersion
processes (see Fig. S3). Because CO performance is uncer-
tain in CMAQ as previously stated, a detailed examination
of the sensitivity to the pcVOC emission scale factor and OH
reaction rate constant is useful.

4.2 Model sensitivity to uncertain pcSOA parameters

Figure 5 shows diurnal-averaged profiles for the observations
and several model cases including nvPOA, BASE, HEBR
(high emission, base reaction), and LEBR. The cases with
pcSOA captured the variability throughout the day, includ-
ing the timing of the afternoon OA peak, and the day-to-
day variability, at all California sites better than the nvPOA
case. At Pasadena, the mean bias improved from −4.01 to
−2.48 µg m−3 and the correlation coefficient increased from
0.15 to 0.81. Performance at Sacramento was particularly
improved in the BASE case (MNE= 0.24, r = 0.91). The
pcVOC emission scale factors for HEBR and LEBR were
set to the upper and lower bounds of the optimal parame-
ter set reported by Hayes et al. (2015). The HEBR case pre-
dicted the magnitude of the afternoon OA peak at Bakers-
field, Sacramento, and Cool but still underpredicted the peak
at Pasadena. However, that underprediction is consistent with
the underprediction at night and so may be a result of miss-
ing nighttime sources or processes. The effect of perturbing
pcVOC emissions on concentrations at Centreville and Look
Rock was more subdued. At those sites, pcSOA contributed
24 and 36 % to the total OA mass in the PM1 range, respec-
tively, in the BASE case. Generally, pcSOA concentrations
were reduced by 30 % when the LEBR parameters were em-
ployed. Accounting for the pcSOA reduction and the effect
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Figure 4. OOA concentrations (µg m−3) at California sites as a
function of the measured Ox (O3+NO2) concentration. A back-
ground concentration, Ox (BG), of 13.5 ppbv is assumed, consis-
tent with Hayes et al. (2015). The boxes behind each trend indi-
cate the 25th and 75th percentiles of the data. The whiskers extend
to the 10th and 90th percentiles. The solid horizontal lines in each
box identify the median, and the solid curves indicate the means of
each model run. Model values are projected to PM1 to correspond
roughly to the size cutoff of the AMS.

of decreased total-OA-absorbing media on other OA surro-
gates resulted in a 13 % decrease in OA PM1 concentrations.

We then varied both of the pcSOA parameters in the
BASE model configuration as described in Table 4 to quan-
tify the sensitivity of model predictions holistically. Fig-
ure 6 shows the NMBF and NMEF metrics calculated for
each combination of input parameters investigated as well
as those of the nvPOA run. These factors were computed
for model–observation pairs grouped by each station indi-
vidually and then averaged together. The conclusions of this
analysis did not change when these metrics were calculated
for all the pairs without grouping into sites first. When com-
paring against continuous data collected during CalNex and
CARES, the nvPOA case performed worse than every sensi-
tivity case for both metrics. For NMBF, the optimal emission
factor likely lies between the base and high values, as long
as the appropriate OH reaction rate is chosen to constrain
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Figure 5. Diurnal OA concentration profile (µg m−3) observed (black line, gray bars) with the HR-ToF-AMS at sites investigated during
the CalNex, CARES, and SOAS campaigns. Also shown are the model-predicted distributions for the nvPOA case, the BASE case, and two
sensitivity cases (LEBR and HEBR). The boxes behind each trend indicate the 25th and 75th percentiles of the data. The whiskers extend
to the 10th and 90th percentiles. The solid horizontal lines in each box identify the median, and the solid curves indicate the means of each
model run. Model values are projected to PM1 to correspond roughly to the size cutoff of the AMS.

the total mass formed. It is not clear whether the parameter
space explored constrained the NMEF values, although they
may possibly plateau at 0.48 as one moves up and to the right
on Fig. 6. These findings are consistent with those of Hayes
et al. (2015), although that analysis parameterized the VOC
precursor emissions to the emission of CO rather than POA.
The emission factor used here avoids the potentially prob-
lematic CO model predictions by relying on the more robust
POA emission rate as an indicator. An area of future work
will be to develop the capability to use total VOC emissions
from all combustion sources as the basis for pcVOC emis-
sions since they should be even more correlated.

Evaluations of NMBF and NMEF for the CONUS11 simu-
lations (Fig. 7) result in different optimal pcSOA parameters.
Daily averaged model predictions are paired with observa-
tions at sites from both the IMPROVE and CSN networks for
January and July 2011. For this application, the nvPOA case
results in a lower NMEF (0.83) than half of the sensitivity
cases, which are those with emission factors or reaction rates
higher than those of the BASE model (NMEF= 0.82). Fur-
ther, the nvPOA case has a lower NMBF (0.39) than all cases
but the LEBR case (0.27). The parameter space is unbounded
here, and even lower emission factor–reaction rate combi-
nations could potentially reduce the NMBF and NMEF, but
those solutions are not supported by the analysis for the CAL
domain. The need for higher emissions or reaction rates to
support higher OA concentrations at the California sites is
not corroborated by the CONUS11 data, indicating that dif-
ferences in the sources or production pathways that drive OA
concentrations at these two scales are not completely cap-
tured with the uniform application of pcSOA. In the east-
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Figure 6. Evaluation of the effect of uncertain parameters for pc-
SOA formation, emission factor, and OH reaction rate constant for
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normalized mean error factor (NMEF) symmetrically represent both
under- and overprediction.

ern US, for example, relative humidity or acidity may play
a larger role for OA formation and deposition. Meanwhile
in the wintertime cases, large wood burning area emissions
may not result in substantial net OA formation downwind.
Although the simulation results shown here take this possi-
ble feature into account for wildfire sources, residential and
other smaller-scale wood combustion sources are assumed to
produce pcSOA consistent with fossil fuel sources. If these
sources are significantly overpredicted, then lower pcSOA
production rates would yield better agreement at the CONUS
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SOA formation, emission factor, and OH reaction rate constant
against OC measurements from IMPROVE and CSN networks.
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used for this analysis.

scale for the wrong reasons. This possibility will be explored
by applying a source-resolved emission inventory to deter-
mine how urban SOA formation from vehicles and cooking
sources might be better simulated in the future.

4.3 Evaluation against routine-monitoring data

We extended the analysis from specific measurement cam-
paigns to a thorough evaluation of a year-long dataset at
the continental US scale, CONUS11. For this application,
we used daily averaged results from the LEBR model case,
which performed best in the January and July CONUS11
scenarios (discussed in Sect. 4.2). Figure 8 summarizes the
model performance across both the IMPROVE and CSN net-
works for the entire year. The MB across all CSN model–
observation pairs decreased substantially from the nvPOA
(0.88) to the LEBR (0.39) case, while the MB at IMPROVE
sites stayed roughly the same. The aggregate improvement
across all sites resulted in about a 50 % reduction in MB, a
12 % reduction in mean error, and very little change to the
correlation coefficient. As shown in Fig. 8c, error decreases
occurred at a majority of sites, with large error decreases
at some sites (up to and exceeding 3 µgC m−3). A minority
of sites showed small increases in error, but none showed
increases above 0.5 µgC m−3. Segregating the data region-
ally (Fig. 8d) indicated similar changes to the model OC
distribution across the US. The new model yielded slightly
less variable OC values (i.e., shorter whiskers) and only
small changes to the median OC predictions. Changes to
the explanatory power of the model data were mixed, with
some regions indicating better correlations (northeast, south-
east, Plains), some worse correlations (Midwest, southwest)
and some staying the same (northwest). The consistency be-
tween the performance of the nvPOA and LEBR cases for
the CONUS11 domain was likely due to the coordination of

several confounding factors including spatiotemporal vari-
ability, uncertainty in emissions and reactivity, and mete-
orological errors (e.g., wet deposition, boundary layer dy-
namics). The evaluations presented in Sect. 4.1 demonstrated
the extensive influence of temporal averaging: at many sites
throughout the CONUS domain, the nvPOA case likely over-
estimated OC concentrations at night and underestimated
them during the day, and these compensating errors averaged
out. This stresses the critical need to evaluate models like
CMAQ at multiple spatial and temporal scales where data
are available.

Figure 9 illustrates the role of seasonal variability. The
nvPOA case overpredicted daily averaged OC concentrations
in the winter months and underpredicted them in the sum-
mer months with correlation coefficients in the range of 0.3–
0.64. This bias trend is a well-documented feature of mod-
els that employ the nvPOA in general (Shrivastava et al.,
2008). The LEBR case reduced almost all of the bias in
October–December 2011 and some of the bias in January
and February, possibly a result of the more accurate tem-
perature dependence in the semivolatile POA model. POA
plays a larger role in the winter months than in the sum-
mer because of favorable temperature-dependent partition-
ing. However, without the pcSOA species, the LEBR case
would likely have slightly underpredicted the observations in
the winter time (see Figs. S5–S7). Meanwhile, performance
during the summer months improved slightly for the LEBR
case, with significant reduction in bias for July. The transition
season months showed smaller bias reductions, with 0.22,
0.14, 0.12, and 0.14 µg m−3 bias reductions for March, April,
September, and October, respectively. During these months,
the opposing changes induced by POA volatilization and pc-
SOA formation had highly variable impacts across the US,
with dependence on temperature, boundary layer height, and
oxidant loadings. The correlation coefficient did not change
appreciably from the nvPOA case to the LEBR case, in con-
trast to the dramatic changes in correlation seen when com-
paring against California hourly data. A regional evaluation
of the NMBF and NMEF metrics broken down by season il-
lustrates that performance in almost every region of the US
improved throughout the year from the nvPOA to the LEBR
case (Fig. 10). The nvPOA case had the worst-performing
predictions during summer, and the LEBR updates moved
all but the northeast region into the statistical area defined
as acceptable by Yu et al. (2006). Performance during the
summer improved for all regions and improved substantially
for the northwest. The NMBF was reduced for all regions in
the fall scenarios although the NMEF changed only slightly.
The only degraded performance occurred in the northwest in
spring, where the NMBF increased by about a factor of 2
and the NMEF by a factor of 3. This is likely driven by er-
rors in the emissions and aging of POA from fire events and
should be investigated in the future as more is learned about
the identity and fate of the compounds emitted by this group
of sources.
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4.4 OA spatiotemporal composition in CMAQ

The total OA surface concentrations predicted by the model
vary considerably from winter to summer for many regions
of the nation (top row of Fig. 11). In the winter, urban lo-
cations emerge as the sources mainly driving the regional
OA distribution, whereas, in the summer, these urban cen-
ters compete with heavily forested regions of the country like
the southeast and the Sierra Nevadas. Although the abun-
dance of biogenic OA observed for 6 weeks at the Centre-
ville site (Xu et al., 2015) is qualitatively reproduced by the
model, significant uncertainties exist in our knowledge of the
air–surface exchange of important biogenic precursors, their
SOA yields, and the partitioning properties of their oxida-
tion products. The annually averaged contribution of POA
(unreacted primary compounds in the particulate phase) pre-
dicted by the model is in the range of 5–10 %, increasing to
30 % in some cities, especially at high elevations with colder
temperatures, which is in the same range as the observations
(Jimenez et al., 2009). These maxima are driven by winter-
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time episodes when the atmospheric lifetime of POA against
evaporation and gas-phase oxidation increases substantially.
The LEBR model predicted that in the summer there is little
contribution of these fresh emissions to particulate loadings
as most of the mass was predicted to be oxidized quickly
in the gas phase. CMAQv5.2 with the LEBR configuration
should be evaluated against AMS-inferred HOA concentra-
tions at cities characterized by higher wintertime POA frac-
tions (e.g., Xu et al., 2015).

The pcSOA concentrations are driven both by variability
in primary pcVOC emissions and by efficient photochemical
oxidation, as illustrated by Fig. 11 (third row). The summer-
time concentration field was similar to that of the total OA
concentrations and was relatively dispersed in the eastern US
like other regional secondary pollutants (e.g., ozone, particu-
late nitrate). Interestingly, the wintertime concentration field
in the east was more dispersed than in the summer because
of the longer lifetime of pcVOC against oxidation to pcSOG.
The increased role of residential wood combustion emis-
sions led to elevated pcSOA concentrations in the northeast
US compared to those in the summer. The pcVOC emission
sources in the western US were visually evident from the pc-
SOA concentration field in both the summer and winter sim-
ulations, mostly due to relatively less population density in
western states compared to the east. An interesting dynamic
associated with pcSOA appeared in California. In the sum-
mer, enhanced photochemistry caused high pcSOA concen-
trations in southern California (4 µgC m−3). Meanwhile, con-
centrations were elevated but not as much in the San Joaquin
Valley. The relationship was flipped in the wintertime where
concentrations were low in southern California and much
higher in the valley. The wintertime San Joaquin Valley en-
hancement was likely due to lower boundary layer heights
enhancing the oxidative capacity of the airshed and increas-
ing the formation rate of pcSOA. Future work will investi-
gate episodes like this to determine if more can be learned
about how the contributions of various SOA pathways vary
seasonally. The percent change in POA concentrations from
the nvPOA to the LEBR cases was highest during the sum-
mer and far from urban sources, as expected. For this study,
the POA boundary conditions were renamed SOA and highly
affect the percent change in POA close to the model bound-
aries. In the summer time, the change in POA concentrations
in the domain interior varied from −100 to −70 % change in
California. The winter simulations showed more variability
(−100 to −55 % change), indicating that even when treat-
ing POA as semivolatile, it is still an important component
of urban and suburban particulate loadings and important to
consider in exposure assessments.

4.5 Multiyear organic carbon trends

For many policy and environmental applications, it is impor-
tant for the model to capture trends in ambient concentra-
tions in response to emissions changes. In order to probe

CMAQv5.2 sensitivity to changes in real-world emissions
from 2002 to 2011, we applied the model (both the nvPOA
and LEBR cases) to the continental US domain during Jan-
uary and July 2002 (CONUS02) and compared the mod-
eled OC predictions to available CSN and IMPROVE ob-
servations (Fig. 12). The OC trend for IMPROVE sites be-
tween January 2002 and January 2011 were relatively flat
and the model reproduced the behavior for both cases. The
January CSN site trends were more complex. While the ob-
servations indicated a decrease of 0.92 µgC m−3 yr−1, both
the nvPOA and LEBR model cases predicted increases of
0.87 and 0.65 µgC m−3 yr−1, respectively. Because this de-
viation occurs in the context of wintertime scenarios, uncer-
tainties from emissions or misrepresented boundary layer dy-
namics likely play a more important role. With more realistic
emissions from this source, both CMAQv5.2 model configu-
rations would predict greater OC, potentially overpredicting
the observations by a similar magnitude as the 2011 datasets.

Both CSN and IMPROVE sites during July show a similar
trend, although it is exacerbated for CSN sites. Here, the ob-
servations indicate dramatic OC decreases (−5.72 % yr−1),
while the nvPOA and LEBR models predict increases by
4.28 % and 3.65 % yr−1, respectively. Clearly the model is
missing an important source or pathway for OC formation
in the 2002 simulation. The 2011 predictions overlap reason-
ably with the observations, so this pathway either diminishes
substantially when moving to the 2011 scenario or there is
a coincident offset by other pathways that may be overes-
timated by the model in 2011. The 2002 CSN observations
are potentially biased by the application of the National In-
stitute for Occupational Safety and Health (NIOSH) method;
the IMPROVE (2002 and 2011) and the CSN 2011 obser-
vations were gathered using the IMPROVE method, which
is consistent with the characterization of the POA emission
factors used to build the emission inventory. Because the dif-
ferences between the NIOSH and IMPROVE methods affects
the observed ratio of OC to elemental carbon (EC), the po-
tential magnitude of OC bias can be estimated by inspecting
the bias in EC. For the CSN 2002 dataset, the MB for EC
is 0.2 µg m−3, indicating that most of the underprediction at
CSN sites in summer 2002 is not related to discrepancies be-
tween measurement methods.

One possible formation pathway of particle-phase OC
mass that could have been higher in 2002 involves pertur-
bations of aerosol liquid water concentrations. Carlton and
Turpin (2013), Pye et al. (2013), and Pye et al. (2017) ar-
gued that higher aerosol water concentrations, possibly re-
sulting from increased sulfate concentrations in the past,
could have enhanced the partitioning of semivolatile organic
compounds, depending on their solubility, or they could have
enhanced reactive uptake rates of VOC oxidation products.
This is consistent with Xu et al. (2017), who showed that
88 % of OA were water soluble at the Centreville site during
SOAS and that only 25–40 % of the total water-soluble or-
ganic compounds were in the particle phase throughout the
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Figure 10. Regional and seasonal model performance at routine-monitoring stations for the CONUS11 simulation as a function of the
normalized mean bias factor (NMBF) and normalized mean error factor (NMEF) for OC predictions. Plotted regions include the northeast
(NE), Midwest (MW), southeast (SE), Plains (PL), northwest (NW), southwest (SW), and total (T) and are defined as visualized in Fig. 8.

day. Figure 13 indicates the trend toward higher OC biases
as sulfate increases. This trend occurred despite the fact that
sulfate and elemental carbon aerosol predictions did not un-
derestimate observations as did OC predictions. CMAQv5.2
includes the aerosol–water dependent pathway of isoprene
OA formation via IEPOX (isoprene-epoxydiol) processing.
A similar interaction among products of anthropogenic VOC
oxidation may be responsible for the discrepancy in the
urban-influenced CSN sites. Another potential OC pathway,
organic nitrate formation, could have played a larger role in
2002 and diminished over the last decade due to decreased
NOx emissions (e.g., Pye et al., 2015). Those authors showed
that a 25 % reduction in NOx led to a 25 % reduction in or-
ganic nitrate SOA. Since 2002, NOx concentrations in the US
have decreased due to the implementation of the NOx Budget
Trading Program (or NOx SIP Call and the Clean Air Inter-
state Rule). For the combined 2002 and 2011 CSN dataset,
the OC underprediction improved from almost −5 µgC m−3

at 50–60 pbbV NOx to unbiased at 10 ppbv NOx and less. Al-
though these relationships are not mechanistic proof of a re-
lationship between OC aerosol formation and SO2 or NOx
emissions, they do encourage further scrutiny of potential
co-benefits that reducing the latter two pollutants has on OA
burden and thus public health. Finally, it is possible that the
ratio of POA to intermediate and high-volatility unspeciated
organic combustion emissions changed from 2002 to 2011 as
new emissions controls and fuel formulations were adopted
(May et al., 2014). Thus, the analysis presented here may
speak to the robustness of using the pcSOA approach for
regulatory applications. Fully quantifying the impacts of the
pcSOA assumption would require comparing to simulations
that include both speciated, source-specific, and year-specific
NMOG estimates in the emissions input generation process
and accurate speciated SOA yields in the CTM.

5 Conclusions

We have shown that CMAQv5.2 with a semivolatile rep-
resentation of POA compounds and an introduction of
the lumped pcSOA model species predicts organic aerosol
concentrations acceptably against high-time-resolution field
campaign data and daily averaged routine-monitoring net-
work products. In almost all cases, the model improves di-
urnal and seasonal trends compared to the model with non-
volatile POA – a consequence of better representation of both
temperature sensitivity and photochemical oxidation depen-
dence. Because the BASE model is able to achieve similar
performance to other more-complicated approaches to OA
formation, we advise the OA fate and transport modeling
community to consider adding complexity only when there
is enough experimental data to provide an associated reduc-
tion in uncertainty.

The discrepancy between the optimal parameters inferred
from the CAL and CONUS11 simulations highlights the im-
portance of not overstating the meaningfulness of pcSOA or
the value of the optimal parameters presented here. Because
these parameters are fit to available observations, they lose
some explanatory power as one extrapolates to other domains
or time periods. However, the essential features of modeled
pcSOA formation, the oxidation of a VOC precursor fol-
lowed by condensation to the particle phase, broadly repre-
sent the transformations of most of the likely pathways to
OA formation needed by the model. This approach parallels
the more-detailed, but still very uncertain, approaches used
in similar CTMs simulating OA from primary sources (Fast
et al., 2014; Koo et al., 2014) while maintaining consistency
with existing regulatory inventories developed over decades.
For these reasons, we feel confident that CMAQv5.2 with
semivolatile POA and pcSOA is a substantial step toward a
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Figure 11. Spatial distribution of products form the LEBR CONUS11 simulation. Products include the OA concentration (row 1), fraction of
POA (row 2), pcSOA concentration (row 3), and change in model-predicted POA from the nonvolatile POA model to the semivolatile POA
model (row 4). Maps illustrate the median of all annual surface data (a, d, g, j), winter months (December, January, February; b, e, h, k), and
summer months (June, July, August; c, f, i, l).

2002 2011

0

2

4

6

O
C

  µ
gC

 m
−3

(a) CSN: winter

Median
Obs

NV−POA
SV−POA

2.59
2.63
1.96

1.67
3.5
2.61

2002 2011

0

2

4

6

(b) CSN: summer

Median
Obs

NV−POA
SV−POA

3.79
1.35
1.49

1.84
1.87
1.98

2002 2011

0

2

4

6

(c) IMP: winter

Obs
nvPOA
svPOA (LEBR)

Median
Obs

NV−POA
SV−POA

0.52
0.36
0.5

0.47
0.46
0.55

2002 2011

0

2

4

6

(d) IMP: summer

Median
Obs

NV−POA
SV−POA

1.49
0.47
0.79

0.97
0.53
0.75
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more accurate representation of OA formation, even though
future work will focus on replacing the pcSOA species with
specific mechanisms constrained by direct measurements.

Based on the limitations discussed in this work, we recom-
mend the chemical transport modeling community address
the following concerns:

– The entire volatility spectrum of primary organic emis-
sions, including IVOCs, should be incorporated directly
into emission inventories and applied to model input as
a function of relevant parameters like combustion tech-
nology and fuel type.

– Because of their unique properties and variable OA
formation potential, organic compound emissions from
biomass burning sources will likely need to be treated
distinctly from fossil fuel combustion sources in CTMs.
For wildfires the net added mass due to SOA formation,
relative to the initial POA mass, is 1–2 orders of magni-
tude lower than for urban sources (Cubison et al., 2011).

– Aerosol–water interactions are an important complexity
to incorporate consistently in CTMs. These interactions
not only impact OA loading (Pye et al., 2017) but have
important implications for deposition rates, diurnal pro-
files, multiyear trends, and model response to the simu-
lated control strategy.

– Organic nitrates were detected at multiple sites during
the CalNex, CARES, and SOAS campaigns. A consis-
tent treatment of these compounds and the effect nitrate
group addition has on volatility and solubility is needed.

– In general, greater efforts are needed to improve the
conceptual link between the gas- and aerosol-phase

chemical components in CTMs. An example of this ap-
proach is described for isoprene epoxide degradation by
Pye et al. (2013) and monoterpene nitrate formation by
Pye et al. (2015).

We further identify the following potential measurement ef-
forts as useful for addressing critical gaps in our current un-
derstanding of OA formation:

– Winter-time ambient observations of urban OA in mul-
tiple cities with varying meteorology. Observations are
needed at high time resolution (at or greater than 1 h) in
order to discern important sensitivities to photooxida-
tion, temperature, and atmospheric water content. Im-
portant properties to constrain are the POA fraction,
volatility/solubility, and aging timescales.

– Detailed transport model comparisons to existing and
upcoming measurements of ambient biomass burning
plumes including characterization of potential down-
wind SOA enhancement as well as aging effects on
volatility/solubility (e.g., Forrister et al., 2015).

– Updated quantitative estimates of SOA yields as a func-
tion of volatility/solubility that take into account losses
of low-volatility vapors to chamber walls.

We conclude that the important OA mass formation pro-
cesses are most likely regional in scale and that OA con-
centrations tend to be regionally distributed in the US, es-
pecially in summer. However, we also emphasize that, de-
spite the diminished contribution direct POA emissions have
in the model predictions as a result of evaporation, they are
still a critical component to consider, especially for exposure
assessments near primary sources, urban centers, and in the
winter. Moreover, the evaporated POA compounds likely re-
act in the vapor phase and may contribute to particle con-
centrations again quickly or they may contribute to the for-
mation of oligomer species, about which little is known with
certainty.

The multiyear trends in Figs. 12 and 13 highlight the diffi-
culty in integrating OA formation and properties into models
to be used for regulatory applications. If interactions with
regulated pollutants (e.g., SO2, NOx) are important contrib-
utors to OA formation, then the applicability of a model con-
figuration to a specific scenario may change over time as the
concentration of those pollutants decreases. Pathways that
used to be important may become less so and vice versa,
thus demonstrating the benefit of evaluating the model for a
wide array of atmospheric conditions. Characterizing model
results with this dynamic view helps improve the robustness
of the model over time and guide future policy decisions and
research.
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Code and data availability. The CMAQv5.2 code for both the
semivolatile and nonvolatile POA options is available via the
GitHub repository (https://github.com/usepa/cmaq). Data included
in figures are available upon request to the contact author. CalNex
measurement data are available through the Earth System Research
Laboratory data portal (https://www.esrl.noaa.gov/csd/groups/csd7/
measurements/2010calnex/, CalNex measurement data, 2012),
CARES data are available through the DOE Atmospheric Radi-
ation Measurement program portal (http://www.archive.arm.gov/
discovery/#v/results/s/fiop::aaf2009carbonaerosol, CARES mea-
surement data, 2010), and SOAS data are available through the
Southeast Atmosphere Study website (https://esrl.noaa.gov/csd/
groups/csd7/measurements/2013senex/, SOAS measurement data,
2014).

The Supplement related to this article is available
online at https://doi.org/10.5194/acp-17-11107-2017-
supplement.
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