Tagged tracer simulations of black carbon in the Arctic: transport, source contributions, and budget
Abstract. We implemented a tagged tracer method of black carbon (BC) into a global chemistry transport model, GEOS-Chem, examined the pathways and efficiency of long-range transport from a variety of anthropogenic and biomass burning emission sources to the Arctic, and quantified the source contributions of individual emissions. Firstly, we evaluated the simulated BC by comparing it with observations at the Arctic sites and examined the sensitivity of an aging parameterization and wet scavenging rate by ice clouds. For tagging BC, we added BC tracers distinguished by source types (anthropogenic and biomass burning) and regions; the global domain was divided into 16 and 27 regions for anthropogenic and biomass burning emissions, respectively. Our simulations showed that BC emitted from Europe and Russia was transported to the Arctic mainly in the lower troposphere during winter and spring. In particular, BC transported from Russia was widely spread over the Arctic in winter and spring, leading to a dominant contribution of 62 % to the Arctic BC near the surface as the annual mean. In contrast, BC emitted from East Asia was found to be transported in the middle troposphere into the Arctic mainly over the Sea of Okhotsk and eastern Siberia during winter and spring. We identified an important window
area, which allowed a strong incoming of East Asian BC to the Arctic (130–180° E and 3–8 km of altitude at 66° N). The model demonstrated that the contribution from East Asia to the Arctic had a maximum at about 5 km of altitude due to uplifting during long-range transport in early spring. The efficiency of BC transport from East Asia to the Arctic was lower than that from other large source regions such as Europe, Russia, and North America. However, the East Asian contribution was the most important for BC in the middle troposphere (41 %) and the BC burden over the Arctic (27 %) because of the large emissions from this region. These results suggested that the main sources of Arctic BC differed with altitude. The contribution of all the anthropogenic sources to Arctic BC concentrations near the surface was dominant (90 %) on an annual basis. The contributions of biomass burning in boreal regions (Siberia, Alaska, and Canada) to the annual total BC deposition onto the Arctic were estimated to be 12–15 %, which became the maximum during summer.