Articles | Volume 17, issue 17
https://doi.org/10.5194/acp-17-10495-2017
https://doi.org/10.5194/acp-17-10495-2017
Research article
 | 
07 Sep 2017
Research article |  | 07 Sep 2017

Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations

Guang Zeng, Olaf Morgenstern, Hisako Shiona, Alan J. Thomas, Richard R. Querel, and Sylvia E. Nichol

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Guang Zeng on behalf of the Authors (28 Jul 2017)  Author's response   Manuscript 
ED: Publish as is (08 Aug 2017) by Hal Maring
AR by Guang Zeng on behalf of the Authors (08 Aug 2017)
Download
Short summary
The long-term ozonesonde record from Lauder, New Zealand, which covers 1987 to 2014, shows a significant positive trend in lower tropospheric ozone, and a significant negative trend in the tropopause region. We conduct a statistical and chemistry–climate model analysis to identify the causes of these trends. We attribute these trends to anthropogenic influences and large-scale dynamical effects such as increasing tropopause height and an increase in stratosphere–troposphere exchange.
Altmetrics
Final-revised paper
Preprint