Articles | Volume 16, issue 14
https://doi.org/10.5194/acp-16-9349-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-9349-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Speciation of OH reactivity above the canopy of an isoprene-dominated forest
J. Kaiser
CORRESPONDING AUTHOR
Department of Chemistry, University of Wisconsin-Madison, Madison, WI,
USA
now at: School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA, USA
K. M. Skog
Department of Chemistry, University of Wisconsin-Madison, Madison, WI,
USA
K. Baumann
Atmospheric Research & Analysis Inc, Cary, NC, USA
S. B. Bertman
Department of Chemistry, Western Michigan University, Kalamazoo, MI,
USA
S. B. Brown
Chemical Sciences Division, NOAA Earth System Research Laboratory,
Boulder, CO, USA
Department of Chemistry, University of Colorado, Boulder, CO, USA
W. H. Brune
Department of Meteorology, Pennsylvania State University, University
Park, PA, USA
J. D. Crounse
Division of Geological and Planetary Sciences, California Institute of
Technology, Pasadena, CA, USA
J. A. de Gouw
Chemical Sciences Division, NOAA Earth System Research Laboratory,
Boulder, CO, USA
Department of Chemistry, University of Colorado, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado Boulder, Boulder, CO, USA
E. S. Edgerton
Atmospheric Research & Analysis Inc, Cary, NC, USA
P. A. Feiner
Department of Meteorology, Pennsylvania State University, University
Park, PA, USA
A. H. Goldstein
Department of Environmental Science, Policy, and Management,
University of California, Berkeley, CA, USA
Department of Civil and
Environmental Engineering, University of California, Berkeley, CA, USA
A. Koss
Chemical Sciences Division, NOAA Earth System Research Laboratory,
Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado Boulder, Boulder, CO, USA
P. K. Misztal
Department of Environmental Science, Policy, and Management,
University of California, Berkeley, CA, USA
T. B. Nguyen
Division of Geological and Planetary Sciences, California Institute of
Technology, Pasadena, CA, USA
K. F. Olson
Department of Environmental Science, Policy, and Management,
University of California, Berkeley, CA, USA
J. M. St. Clair
Division of Geological and Planetary Sciences, California Institute of
Technology, Pasadena, CA, USA
now at: Joint Center for Earth Systems Technology, University of
Maryland Baltimore County, Baltimore, MD, USA
now at: Atmospheric Chemistry and
Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
A. P. Teng
Division of Geological and Planetary Sciences, California Institute of
Technology, Pasadena, CA, USA
S. Toma
Department of Chemistry, Western Michigan University, Kalamazoo, MI,
USA
P. O. Wennberg
Division of Geological and Planetary Sciences, California Institute of
Technology, Pasadena, CA, USA
Division of Engineering and Applied Science, California Institute of
Technology, Pasadena, CA, USA
R. J. Wild
Chemical Sciences Division, NOAA Earth System Research Laboratory,
Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado Boulder, Boulder, CO, USA
L. Zhang
Department of Meteorology, Pennsylvania State University, University
Park, PA, USA
F. N. Keutsch
School of Engineering and Applied Sciences and Department of
Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
Viewed
Total article views: 4,789 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Jan 2016)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 3,170 | 1,522 | 97 | 4,789 | 606 | 138 | 193 |
- HTML: 3,170
- PDF: 1,522
- XML: 97
- Total: 4,789
- Supplement: 606
- BibTeX: 138
- EndNote: 193
Total article views: 4,005 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 28 Jul 2016)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 2,795 | 1,122 | 88 | 4,005 | 384 | 124 | 169 |
- HTML: 2,795
- PDF: 1,122
- XML: 88
- Total: 4,005
- Supplement: 384
- BibTeX: 124
- EndNote: 169
Total article views: 784 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Jan 2016)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 375 | 400 | 9 | 784 | 222 | 14 | 24 |
- HTML: 375
- PDF: 400
- XML: 9
- Total: 784
- Supplement: 222
- BibTeX: 14
- EndNote: 24
Latest update: 08 Nov 2025
Short summary
OH reactivity can be used to assess the amount of reactive carbon in an air mass. “Missing” reactivity is commonly found in forested environments and is attributed to either direct emissions of unmeasured volatile organic compounds or to unmeasured/underpredicted oxidation products. Using a box model and measurements from the 2013 SOAS campaign, we find only small discrepancies in measured and calculated reactivity. Our results suggest the discrepancies stem from unmeasured direct emissions.
OH reactivity can be used to assess the amount of reactive carbon in an air mass. “Missing”...
Altmetrics
Final-revised paper
Preprint